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Abstract

Polarization has found applications in various computer
vision tasks by providing additional physical cues. How-
ever; due to the limitations of current imaging systems, po-
larimetric parameters are typically stored in discrete form,
which is non-differentiable and limits their applicability in
polarization-based vision. While current neural field meth-
ods have shown promise for continuous signal reconstruc-
tion, they struggle to model the intrinsic physical interdepen-
dencies among polarimetric parameters. In this work, we
propose a physics-grounded representation scheme to rep-
resent polarimetric parameters as a unified complex-valued
wave. Tailored to this scheme, we propose a tuning-free fit-
ting strategy along with a lightweight complex-valued neural
network, enabling property-preserved reconstruction. Ex-
perimental results show that our method achieves state-of-
the-art performance and facilitates smooth polarized image
rendering and flexible resolution adjustments.

1. Introduction

Polarization, alongside amplitude and phase, is a funda-
mental property of light and has shown promise in various
computer vision tasks by providing additional physical cues.
To capture the polarimetric parameters (including the total
intensity (TI), degree of polarization (DoP), and angle of
polarization (AoP)) of a scene, current polarimetric imag-
ing methods typically require acquiring multiple polarized
images, either by using linear polarizers or polarization cam-
eras [43]. However, since the captured polarized images are
stored in discrete form (i.e., as pixels), the calculated polari-
metric parameters are also discrete and non-differentiable,
preventing smooth polarized image rendering and flexible
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resolution adjustments [29], thus limiting their applicability
in tasks such as reflection removal [14, 22] and shape from
polarization [6, 23]. In contrast, obtaining these parameters
in continuous form would not only address these issues but
also enable continuous optimization and improve memory ef-
ficiency. Therefore, reconstructing polarimetric parameters
from discrete to continuous form is of practical significance.

Recent advances in neural fields [16, 21] have made
progress in parameterizing varying physical quantities with
neural networks. By leveraging various nonlinearities and
architectural designs to fit directly, as shown in Fig. 1 (top
left (a)), these methods enable reliable reconstruction of con-
tinuous signals from discrete data. However, when fitting
multiple polarimetric parameters concurrently, they struggle
with the wide range of spatial frequencies, introducing no-
ticeable artifacts. To mitigate this issue, multi-band solutions
[29] have been proposed. As shown in Fig. 1 (top left (b)),
these methods decompose the polarimetric parameters into a
series of bands and fit them sequentially. Nevertheless, exist-
ing methods, whether fitting in a direct manner or through a
multi-band solution, still face several limitations:

e Physics-unaware representation: All methods treat
different parameters identically, without explicitly con-
sidering their physical meanings and interdependencies.

e Scene-dependent fitting: Multi-band solutions require
manually tuning the threshold of each band for each
scene, hindering automation in the fitting process.

e Parameter-heavy architecture: Multi-band solutions
naturally necessitate larger network capacity, leading to
increased parameter count and model size.

We observe that different polarimetric parameters are
inherently correlated through the Stokes parameters [12],
meaning that a change in one inevitably affects the others.
Interestingly, this interdependence resembles quantum en-
tanglement [4], where components are intrinsically linked
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Figure 1. Top left: Current neural field methods represent the polarimetric parameters (including the total intensity (TI), degree of polarization
(DoP), and angle of polarization (AoP)) as independent particles and use real-valued networks to fit them concurrently, either in a direct
manner (e.g., (a) FINER [21]) or through a multi-band solution (e.g., (b) pCON [29]). Bottom left: In contrast, we represent the polarimetric
parameters as a unified wave and utilize a complex-valued network to fit them in a tuning-free manner, modeling the fitting process as a
“communication system” with a transmitter encoder and a receiver decoder. Right: The reconstruction results of FINER [21], pCON [29],
and ours. Following previous works [19, 42], we visualize the DoP and AoP using color maps. Please zoom in for better details.

rather than independent. Inspired by this analogy, we pro-
pose to represent the polarimetric parameters as a unified
complex-valued wave (Fig. 1 (bottom left)), instead of as
independent particles (Fig. 1 (top left)). This representa-
tion scheme not only effectively captures the interdependen-
cies among polarimetric parameters, but also aligns with
the physical image formation model of polarized images.
Tailored to this scheme, we introduce a tuning-free fitting
strategy that fully decouples the fitting process from scene
dependency. By modeling the fitting process as a “com-
munication system” including a transmitter encoder and a
receiver decoder, the wave is treated as a modulated sig-
nal, with demodulation-like operations employed to robustly
retrieve each polarimetric parameter, similar to separating
the carrier and message signals. Specifically, we design a
lightweight complex-valued neural network to implement
the fitting strategy efficiently, seamlessly adapting to the
formulation of wave while achieving superior performance.
To summarize, this paper contributes by demonstrating:

o A physics-grounded representation scheme, integrat-
ing the physical meanings and interdependencies of the
polarimetric parameters into a unified wave.

e A tuning-free fitting strategy, fully decoupling the
fitting process from scene dependency and enabling
robust retrieval of each polarimetric parameter.

o A lightweight complex-valued network, seamlessly
adapting to the formulation of wave with a compact
architecture and superior performance.

Experimental results show that our method achieves state-

of-the-art performance and facilitates smooth polarized im-
age rendering and flexible resolution adjustments.

2. Related Work

Polarization-based vision. Polarization-based vision algo-
rithms aim to conquer the performance bottleneck of image-
based ones, by fully exploiting the additional physical cues
encoded in polarimetric parameters. Some methods are de-
signed for solving high-level vision problems in applications
such as robotics (e.g., transparent object segmentation for
bin picking [9, 26]) and autonomous driving (e.g., road scene
understanding [18, 20]). Some methods focus on 3D vision,
such as shape estimation [6, 23] and depth sensing [8, 37].
There are also methods focus on image enhancement, such as
reflection removal [14, 22], image dehazing [33, 40], HDR
reconstruction [41], and shadow removal [45].
Polarimetric imaging. Polarimetric imaging aims to obtain
the polarimetric parameters of the scene by capturing po-
larized images. To improve the accuracy, various methods
have been proposed to enhance the quality of captured polar-
ized images through post-processing. They focus on explic-
itly mitigating degradations caused by demosaicing artifacts
[30, 46], low-light noise [19, 42], motion blur [44], etc. Mov-
ing beyond post-processing, computational photography-
based polarimetric imaging frameworks [43] have also been
explored. However, these methods still produce discrete
outputs, limiting their usage in continuous optimization.
Neural fields. A neural field is a field (i.e., a varying physi-
cal quantity of coordinates) parameterized by a neural net-
work, typically based on multilayer perceptrons (MLPs) [39].
Within MLPs, ReLU is the most commonly used nonlinear-
ity, often combined with positional encoding [36]. This
approach has been widely applied in novel view synthesis



[25, 27], shape representation [5, 28], and medical imaging
[35, 38], etc. Recently, alternative nonlinearities have been
introduced to improve signal encoding quality, including
sinusoidal functions [34], Gaussian functions [31], com-
plex Gabor wavelets [32], and variable-periodic functions
(FINER) [21]. Additionally, novel architectural designs have
been proposed to improve fitting efficiency, such as multi-
scale block-coordinate decomposition [24], generalized su-
perpixels (S-INR) [16], and spatially collaged Fourier bases
[17]. While these methods tend to introduce noticeable arti-
facts when applied to polarimetric parameters, pCON [29],
the most related work, proposes a multi-band solution to miti-
gate this issue. However, it requires scene-dependent manual
band tuning and larger network capacity. It is worth noting
that, while many neural field methods also incorporate polar-
ization (e.g., using polarization for radiance decomposition
[3], novel-view hyperspectral rendering [10], and geometry
and material estimation [15]), their focus is on using po-
larization as guidance, rather than fitting the polarimetric
parameters, which differs from our aim.

3. Method

3.1. Background and Problem Formulation

Polarimetric parameters: definition. Light propagates
as a wave of electric and magnetic fields, with polarization
describing the orientation of the electric field oscillations.
While most natural light sources (e.g., sunlight) emit unpo-
larized light, various optical phenomena such as reflection,
refraction, and scattering commonly induce partial polariza-
tion' in the light that reaches our eyes [12]. Denoting the
total intensity (TI) of the light as I, it can be decomposed
into two components with different polarization properties:

I=1,+1, (1)

where I, is the unpolarized component (i.e., the electric
field of I, oscillates randomly and evenly) and I, is the fully
polarized component (i.e., the electric field I,, oscillates in
a single plane with a constant orientation). When a linear
polarizer with angle « is used to filter I, the transmitted light
intensity I,, follows Malus’ law [7]:

I.==-(1—-p-cos(2(a—0))), )

DO | e

where p € [0,1] is the degree of polarization (DoP) and
0 € [0, 7] is the angle of polarization (AoP)”. DoP measures

'In this paper, like pCON [29], we focus on linear polarization, as
most natural optical phenomena do not induce circular polarization. For
simplicity, we refer to linear polarization simply as polarization.

2In some works, Eq. (2) appears as I, = I- (1 +p-cos(2(0 —«)))/2
[9, 29], which is equally valid but follows a different convention. We adopt
the formulation used in previous works such as [33, 42]. Discussions about
the conventions can be found in the supplementary material.

how much the light is polarized, which is defined as

pzi:[p :I—p
(I, +1,) I’

3)
and AoP describes the orientation of the electric field of L.
Since I, can be rendered for any arbitrary « given I, p, and
0, these three physical quantities (TI, DoP, and AoP) are
referred to as polarimetric parameters [29].
Polarimetric parameters: discrete acquisition. Since I,
and I, are unknown, polarimetric parameters cannot be ob-
tained directly. Instead, current polarimetric imaging meth-
ods estimate them by capturing multiple polarized images.
Denoting I, , ,, € R3X"Xw a5 the polarized images cap-
tured at ag 934 = 0°,45°,90°,135°, the corresponding
Stokes parameters Sg 1.2 € R3%hXxw [12] are defined as
So=1,, +10, =10, + 1, 4@
Si=I,,—1,, and S2=1,, — L,,

and the polarimetric parameters can be calculated using

\/S% + 83 1 So
I=Sy,p= s, and 6 = iarctan(s—l). 5)

Thus, the polarimetric parameters are acquired indirectly
and stored in discrete form similar to I, , , , (i.e., I, p,0 €
R3*h*w) Jimiting their usage in continuous optimization.
Polarimetric parameters: continuous reconstruction.
Our goal is to design a polarimetric neural field to recon-
struct continuous polarimetric parameters from their discrete
observations while preserving the polarization properties of
light. Specifically, this involves concurrently fitting both
TI, DoP, and AoP using a neural network f(x;7), where
x represents the input querying coordinates, 1 denotes the
network parameters, and the network output is expected to
closely approximate the sampled values of TI, DoP, and AoP
at x. Due to the differentiable nature of the neural network,
polarimetric parameters can be queried at any resolution,
enabling inherently continuous storage.

3.2. Physics-Grounded Representation Scheme

Before fitting, it is essential to design a suitable representa-
tion scheme that helps the network to interpret the character-
istics of the polarimetric parameters. As shown in Fig. 1 (top
left), existing methods [16, 21, 29] adopt a straightforward
way to represent I, p, and 0 as independent particles, treating
them identically without explicitly considering their physical
meanings and interdependencies. However, as indicated by
Eq. (4) and Eq. (5), both I and p are related to Sy, while p
and 0 are related to S; ». This reveals that I, p, and 6 are
entangled with each other. As a proof of concept, we select
two different scenes and calculate the mutual information
(MI) [1] between various physical quantities, as illustrated
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Figure 2. The mutual information between two different polari-
metric parameters within the same scene is much higher than that
between the same polarimetric parameter across different scenes,
confirming the interdependencies among polarimetric parameters.

in Fig. 2. We can see that the MI between two different po-
larimetric parameters within the same scene is much higher
than that between the same polarimetric parameter across
different scenes, confirming the interdependencies among
polarimetric parameters.

We observe that the interdependencies among polarimet-
ric parameters bear similarities to quantum entanglement:
in quantum mechanics, entangled particles should be repre-
sented as an inseparable whole (i.e., a wave) instead of being
described independently [4]. Inspired by this concept, as
shown in Fig. 1 (bottom left), we propose to represent I, p,
and 0 as a unified wave 1:

P(I,p,0) = ze" =1-pe'??, (©6)

where z = I - p and v = 26 denote its amplitude and
phase, and i is the imaginary unit satisfying 2 = —1. This
representation scheme offers several advantages. First, as
shown in Eq. (6), the amplitude z directly corresponds to the
fully polarized component of light (I, see Eq. (1) and Eq. (3)
for details), establishing a clear physical connection between
TI and DoP. This explicit linkage enables the fitting process
to effectively exploit their mutual information for improved
accuracy. Additionally, the phase «y naturally encodes AoP as
an angular quantity, inherently capturing its periodic nature,
which aligns well with its physical meaning.

Here, we also show that the proposed representation
scheme is consistent to the physical image formation model
of polarized images. Reformulating S; 2 in Eq. (4) as the
functions of I, p, and @, we can obtain

Si=I-p-cos(20) and Sy =1 p-sin(20). (7)

Expanding Eq. (6) with Euler’s formula and substituting
Eq. (7) into it, we could get the following equation:

Y(I,p,0) =1-p-(cos(20)+i-sin(20)) = S;+i-Sz, (8)

which demonstrates that 1/ inherently follows the additive
properties of the Stokes parameters. Therefore, in addition
to sharing a similar form with a wave, 1) also adheres to the
following rules:

Rule 1. A linear combination of multiple beams of light can
be represented as a linear combination of multiple waves
shown in Eq. (6).

Explanation. Using the superscripts j and comb to denote
the individual terms within the linear combination and the
resulting combination, we can deduce

n n n
S wp@ = 3 w89 4.3 sy
j=1 j=1 j=1

_ S(lcomb) +i- S(200mb) _ w(comb)

©))

)

where w7) is the weight of the j-th term. Here, the DoP and
AoP of the resulting combination can be easily obtained by

(comb) _ H,l/)(comb)H
T(comb) ~’

/ (comb)
gleomd) — 711} 5 and p

(10
where /- and || - || denote extracting the phase and magni-
tude respectively, and I(¢0"0) = 2?21 wIG) | which is
consistent to the superposition of linear polarized light in the
physical world.

Rule 2. Using a polarizer to filter a beam of light corre-
sponds to projecting its wave representation onto the state
defined by the polarizer angle, and the outcome of this “ob-
servation” is the component aligned with the polarizer.
Explanation. Expanding Eq. (2), we can get I, = (I —
I-p-cos(2(0 — «))). Then, according to the fact that the
cosine function can be expressed as the real part of a complex
exponential, we can deduce

(I-L-p-R(e20=))) = %(I—%(@be‘i'm)) (11)

1

I,
2

where () denotes the operator for extracting the real part.
From the above equation, we can see that the term 1pe %2
has a product form, corresponding to the “observation” pro-
duced by projecting 1) onto the direction defined by the
polarizer angle «, which is consistent with the physics un-
derlying real-world polarimetric imaging.

3.3. Tuning-Free Fitting Strategy

Due to the large domain gap among I, p, and 8, which intro-
duces a wide range of spatial frequencies, methods based on
direct fitting [16, 21] often result in noticeable artifacts, mak-
ing the design of an effective fitting strategy challenging. To
mitigate the artifacts, multi-band solutions [29] decompose
the polarimetric parameters into multiple frequency bands
and fit them sequentially. However, these methods treat band
thresholds as hyperparameters that require manual tuning for
each scene, which hinders automation in the fitting process.



Transmitter encoder (3" Receiver decoder &,  Output

(:]

— 0
Tenc = Tdec
coordinates — -

Input querying

E =1 D T
| Fwave % msg & msg 1
enc mg F enc h_E &
H
] DoP
B k —~p
|
| * ] AoP [
y }

Real-valued Complex-valued Features &

D e B Iil demodulator Iil demodulator |:” data flows

Extract the Real-valued Complex-valued
‘ magnitude @ (Concatenats l:] loss l:] loss
Figure 3. The proposed tuning-free fitting strategy tailored to our
physics-grounded representation. By modeling the fitting process
as a “communication system” including a transmitter encoder and a
receiver decoder, it employs demodulation-like operations to sepa-
rate the carrier and message signals for retrieving each polarimetric
parameter, making full use of their interdependencies.

To eliminate scene dependency in the fitting process,
we introduce a tuning-free strategy tailored to our physics-
grounded representation, combining the simplicity of direct
fitting with effective artifact suppression. Notably, we ob-
serve that Eq. (8) can be written as

¥(1,p,0)

where k is a complex quantity whose amplitude is confined
within the unit circle, as p € [0,1]. This implies that the
structure of 1 resembles a modulated complex signal, with
I acting as the message signal modulating the carrier signal
k = p-cos(20) +i - p - sin(20) = pe”??. Based on this
observation, we propose to model the fitting process as a
“communication system” including a transmitter encoder and
areceiver decoder, and employ demodulation-like operations
to separate the carrier and message signals for retrieving each
polarimetric parameter, as shown in Fig. 3.

To fully exploit the interdependencies among the polari-
metric parameters, we design the transmitter encoder as a
top-down hierarchical structure. First, we use a modulator,
Fa&ve, to map the input querying coordinates x into Fyaye,
which stands for the global features of the wave ), encapsu-
lating the structural and contextual information of the scene
shared by both TI, DoP, and AoP [43]. Subsequently, from
Fyave, two additional modulator branches, Fepe: and FT,
are adopted to separately encode the distinct information of
the message signal I and the carrier signal k into the corre-
sponding features, Fs and Fe,r. Here, since the spatial
frequency of AoP is typically much higher than that of the
DoP [29], directly applying demodulation-like operations
to F ., to optimize both the magnitude and phase of k may

=1-(p-cos(20)+i-p-sin(20)) =1-k, (12)

introduce frequency interference between the DoP and AoP.
To mitigate this, from F,;, we add another two modulator
branches, FX_ and F2,, to further encode the low-frequency
textures of k and the high-frequency details exclusive to
0 into the features Fy and Fg, respectively. The whole

transmitter encoder £ can be written as

Fmsg7 Fi,Fo = £(x), where Fyae = Fai®(x),
msg = féﬁi ( wave) carr ]:gﬁfr( wave)> (13)
Fk - ]:enc(Fcarr)a and F9 - ]:enc(Fcarr)~

For the receiver decoder, we design it as a parallel three-
branches structure to decode the features F,,, Fi and Fg
into their respective physical quantities. Specifically, in
the first two branches, since the message signal I is real
while the carrier signal k is complex, we adopt a real-valued
demodulator F.¢ and a complex-valued demodulator Fy,
to decode Fysg and Fy into I and k, respectively. The DoP
p is then computed as p = || k||. In the third branch, rather
than directly decoding Fg into 8, we choose to make full
use of both Fy and Fg by applying another real-valued
demodulator F2 to their concatenation. This is because
k inherently carries prior knowledge of @ (i.e., under ideal
fitting, the phase of k should be 20), suggesting that Fy
could contribute to enhancing the accuracy of 8. The whole
receiver decoder D can be written as

L= PR e p = I = IZEEOL
and 0 = Fo (concat(Fy,Fg)).

With the above fitting strategy, we only need to focus
on the module designs of the modulators and demodulators,
getting rid of any scene-related hyperparameters. Besides,
we can conveniently design loss functions for direct opti-
mization, avoiding multi-band optimization.

3.4. Lightweight Complex-Valued Network

To unlock the full potential of our tuning-free fitting strategy,
it is essential to carefully design the network architecture for
its implementation. Current neural field methods [16, 21, 29]
commonly employ the rMLP (real-valued MLP) with vari-
ous nonlinearities as the basic building block. However, they
are not suitable for our case due to the inherently complex-
valued nature of the wave formulation. Besides, forcibly
using two separate real-valued networks to fit the fundamen-
tal components of the wave, whether represented as real and
imaginary parts or as magnitude and phase, would not only
fail to capture the interdependencies among the polarimet-
ric parameters but also significantly increase the parameter
count, resulting in a heavy computational burden. Therefore,
we design a lightweight complex-valued neural network that
naturally aligns with the formulation of the wave, enabling
efficient fitting.
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Figure 4. We design a lightweight complex-valued neural network that naturally aligns with the formulation of the wave, enabling efficient
fitting. (a) Basic building blocks. (b) The workflow of the proposed cSine layer. (c) The workflow of the proposed c2rMLP layer.

Basic building blocks. As shown in Fig. 4 (a), for the
modulators, since they process both complex-valued input
and output signals, we design their basic building block as
a cMLP (complex-valued MLP) and a custom cSine layer
(where the output of cMLP is scaled by a real-valued factor
w before being passed to the cSine layer), leveraging the
high representational ability of MLPs equipped with periodic
activation functions [34]; for the demodulators, the complex-
valued ones use a cMLP to decode the complex-valued fea-
tures into complex-valued output, while the real-valued ones
adopt a custom c2rMLP layer to convert the complex-valued
features into real-valued output.

cSine layer. As shown in Fig. 4 (b), to ensure its periodicity
and boundedness, we design the cSine layer as

Fou = sin(R(Fiy)) + ¢ - sin(S(Fin)), (15)

where R(-) and 3(-) are the operators for extracting the
real and imaginary parts, Fy, and F, denote the input and
output respectively. The reason we do not apply the sine
activation directly to Fy, is that the sine function in the
complex domain is not generally bounded (i.e., for a, b € R,
sin(a + b - i) = sin(a) cosh(b) + cos(a)sinh(b), where
cosh(b) and sinh(b) grow exponentially as b increases).

c2rMLP layer. As shown in Fig. 4 (c), the c2rMLP layer
is designed to convert the complex-valued input Fj, into
real-valued output F,,. Previous works [2, 13] have demon-
strated that optimizing values in Cartesian coordinates (i.e.,
as real and imaginary parts) is less nonlinear and offers
higher numerical stability compared to polar coordinates
(i.e., as magnitude and phase). Therefore, we first extract the
real and imaginary parts of F;,, denoted as FI*! and F} ",
respectively. Next, we apply an alternating merging (AM)
approach to recombine Fi¢?! and F;*® into a new feature vec-
tor F$™_ensuring that the real and imaginary parts of each
element from Fj, are placed at adjacent indices in Ff;’mb.
Compared to directly concatenating ™' and Fi¢, the AM
approach allows the network to more effectively capture the
relationship between the real and imaginary parts. Finally,
we use an rMLP to obtain F,; from Fffl’mb. The workflow

of the c2rMLP layer can be summarized as:
Fouw =rMLP(AM(R(Fin), S(Fin))).  (16)

Layer configurations. The hidden dimension of the cMLP
in all modulators is set to 256. For Fyave, Fove Fear 1k
and F2_, we set the number of basic building blocks and
the factor w to (1, 60), (3, 30), (1, 30), (3, 30), and (3, 30),
respectively. All demodulators consist of a single basic
building block. All MLPs are initialized as [34].

Loss function. As shown in Fig. 3, we compute the loss
functions between the predicted parameters I, k, and 8 and
their corresponding ground truths. The loss function for each
parameter is defined as Ly, = A1 L1 (v, vg) + A2 La(V, V),
where v and vy denote the predicted parameter and its
ground truth, L, o are the ¢; 5 loss functions. For I, k, and 6,
we set A1 2 to (2,20), (0.5,100), and (1, 10), respectively.
Training. Our network is implemented using PyTorch and
trained on an NVIDIA 4090 GPU. We train the network for
105 epochs with a fixed learning rate of 5 x 107>, We use
Adam optimizer [11] for optimization.

4. Experiments

4.1. Comparison with Existing Methods

We compare our method with the state-of-the-art multi-band
solution (pCON [29]), as well as two state-of-the-art meth-
ods based on direct fitting (FINER [21] and S-INR [16]).
The evaluation dataset is the same as that used by pCON
[29], and we follow its pre-processing approach to resize the
polarized images to 1024 x 1024. Note that for pCON [29],
we use the band thresholds specified in its supplementary ma-
terials when available; otherwise, we adopt the default values
from its released code. The number of parameters and out-
put values for FINER [21] and S-INR [16] are also adjusted
following the same approach as in pCON [29], since these
methods were originally designed to fit a single quantity at a
time, not fitting TI, DoP, and AoP concurrently.

To evaluate the fitting accuracy, following pCON [29], we
calculate PSNR and SSIM on both TI, DoP, and AoP. Quan-



Table 1. Quantitative comparisons with the state-of-the-art multi-band solution (pCON [29]), as well as two state-of-the-art methods based
on direct fitting (FINER [21], and S-INR [16]). Throughout this paper, 1 ({) indicates that higher (lower) values correspond to better results,
and we use the red (blue) text to highlight the best (second-best) results.

PSNR1/SSIM7 of the TI (I)
pCON [29] FINER [21] S-INR[16] Ours

PSNR1/SSIM? of the DoP (p)
pCON [29] FINER [21] S-INR[16] Ours

PSNR1/SSIM? of the AoP (6)
pCON [29] FINER [21] S-INR[16] Ours

Firewood
Grater
Pottery
Stream
Sunroom
Valentines

39.95/0.957 27.36/0.647 36.75/0.920 53.54/0.992 | 33.66/0.775 30.61/0.700 33.56/0.785 36.01/0.857 | 17.24/0.704 16.78/0.661 17.17/0.653  17.26/0.668
38.62/0.955 27.84/0.732  37.35/0.940  50.30/0.994 | 30.13/0.697 26.88/0.543 30.14/0.728 32.97/0.830 | 17.47/0.682 16.01/0.630 16.48/0.631 16.92/0.637
39.03/0.957 28.12/0.749  36.18/0.925 48.54/0.986 | 32.09/0.769 29.59/0.720 32.15/0.796 35.14/0.864 | 18.01/0.772 17.36/0.697 17.37/0.722 17.64/0.677
37.58/0.945 34.21/0.879 36.39/0.935 43.56/0.987 | 31.90/0.797 30.37/0.731 30.44/0.730 33.24/0.851 | 24.59/0.786 24.27/0.763 23.97/0.769  24.65/0.788
42.94/0.968 35.91/0.910 40.87/0.960 46.17/0.969 | 38.49/0.919 36.41/0.885 38.00/0.909 41.35/0.952 | 28.18/0.852 28.16/0.845 28.13/0.828  28.20/0.857

Building 38.64/0.942  33.32/0.830 36.85/0.918  47.70/0.989 | 26.84/0.644 27.44/0.679 26.63/0.684 29.23/0.767 | 21.28/0.710 19.38/0.721 20.81/0.723  21.33/0.622
35.98/0.935 28.68/0.771 35.84/0.927 46.60/0.985 | 30.81/0.750 28.04/0.674 31.51/0.805 34.55/0.868 | 18.78/0.717 18.04/0.649 18.45/0.745 18.56/0.618
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Figure 5. Qualitative comparisons with pCON [29], FINER [21], and S-INR [16]. Please zoom in for better details.

titative results are presented in Tab. 1, where our method
significantly outperforms all compared methods on TI and
DoP while achieving comparable performance on AoP. Vi-
sual quality comparisons are shown in Fig. 5°. As illustrated,
FINER [21] and S-INR [16] tend to introduce noise pat-
terns in TI, while pCON [29] produces blurry edges; in
contrast, our method generates clean and sharp edges. For
DoP, all compared methods exhibit severe artifacts, whereas
our method does not. For AoP, our method closely resembles
the ground truth without distortion. To evaluate the fitting
efficiency, we measure both the number of parameters and
the model size. The results, presented in Tab. 2, demonstrate
that our method outperforms multi-band solutions [29] in
fitting accuracy while maintaining similar fitting efficiency
to methods based on direct fitting [16, 21].

4.2. Ablation Study

We conduct several ablation studies in Tab. 3 to verify the va-
lidity of each design choice, using the scene in Fig. 1 (right)
as the validation case. First, we show the importance of rep-
resenting the polarimetric parameters as a unified wave by
comparing to a model that also employs a complex-valued

3 Additional results can be found in the supplementary material.

Table 2. Comparisons on the number of parameters (Params.) and
model size (Sz.) with pCON [29], FINER [21], and S-INR [16].
“Discrete” means directly storing the data in discrete form.

|| PCON[29] FINER[21] S-INR[16]  Ours
Params. | H 1.34M 0.66M 1.27M 0.66M N/A

Discrete

Sz.| 5.14MB 2.52MB 5.10MB 5.05MB  36.00MB

Table 3. Quantitative evaluation results of ablation study.

PSNRT/SSIMT PSNR1/SSIMt PSNR1/SSIM+
of the TI (I) of the DoP (p)  of the AoP (6)
W/o wave 39.22/0.942 6.63/0.020 18.72/0.750
Direct fitting 39.43/0.969 39.76/0.930 11.71/0.512
‘W/o AoP branch 53.53/0.991 37.93/0.903 11.99/0.461
Real-valued network 14.42/0.011 31.16/0.746 16.31/0.611
W/o AM 53.51/0.991 35.98/0.856 17.04/0.663
Our complete method 53.54/0.992 36.01/0.857 17.26/0.668

network (composed of the same basic building blocks in
Fig. 4 (c¢)) but instead represents the polarimetric parame-
ters as independent particles (W/o wave). While this model
achieves the best performance on AoP, it fails to fit DoP due
to the large domain gap among TI, DoP, and AoP. Next, we
highlight the significance of our fitting strategy by compar-
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Figure 6. Qualitative comparisons on the accuracy of the rendered polarized images with pCON [29], FINER [21], and S-INR [16]. Here,
we show the rendered I, (the polarized images at a; = 0°). Please zoom in for better details.

Figure 7. Qualitative comparisons of the 2 super-resolution query-
ing performance with pCON [29] and FINER [21].

ing to a model that directly fits I and k of the wave (Direct
fitting). While this model achieves the best performance on
the DoP, it cannot fit AoP well because it optimizes AoP
in an implicit manner, which proves ineffective. Besides,
we validate the advantage of introducing a dedicated branch
(including the modulator F2 and the demodulator F2..)
specifically for AoP by removing it (W/o AoP branch). We
can see that incorporating this branch notably enhances AoP
performance, with only a minimal trade-off in DoP accuracy.
Then, we verify the necessity of our complex-valued network
by comparing to a model that forcibly uses two separate real-
valued networks (replacing our cMLP and cSine with rMLP
and Sine activation) to fit the real and imaginary parts of
the wave (Real-valued network). The results show that this
model fails to fit T, as it struggles to capture the interdepen-
dencies among the polarimetric parameters. Finally, we also
compare with a model that does not adopt the AM approach
within the c2rMLP (W/o AM), which shows that AM plays
a crucial role in enhancing the performance. The above
experiments indicate that our complete method effectively
balances the performance of all polarimetric parameters.

4.3. Application

Polarized image rendering. To show that our method can
facilitate polarization-based vision, we use the reconstructed
polarimetric parameters to render polarized images and eval-
uate their accuracy. For validation, we select polarizer an-
gles of a1 2,34 = 0°,45°,90°,135°, which are the specific
angles that real polarization cameras can capture. Visual
quality comparisons are shown in Fig. 6*, where our result
has fewer artifacts and noise patterns.

Super-resolution querying. To demonstrate the continuity
of the reconstructed results, we evaluate the super-resolution
querying performance. Specifically, we fit the polarimetric
parameters at a resolution of 1024 x 1024 and query them
at 2048 x 2048. At this stage, we compare only with pCON
[29] and FINER [21], as S-INR [16] supports querying only
at the resolution used for fitting. Visual quality comparisons
are shown in Fig. 67, where our result exhibits finer details
and better fidelity to the ground truth.

5. Conclusion

We propose a polarimetric neural field method to reconstruct
continuous polarimetric parameters from discrete data. By
introducing a physics-grounded representation scheme that
represents the parameters as a unified complex-valued wave,
combined with a tuning-free fitting strategy and a lightweight
complex-valued neural network, it achieves state-of-the-art
performance and facilitates smooth polarized image render-
ing and flexible resolution adjustments.

Limitations. Since our method is specifically designed for
linear polarization, similar to pCON [29], it is not applicable
to circular polarization. As future work, we also aim to
extend our method to support circular polarization.
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A. Discussions About the Conventions

In this section, we provide discussions about the conventions
for polarimetric parameters, corresponding to Footnote 2 of
the main paper.

Malus’ law [1] describes the relationship between the
polarized image I, (captured using a linear polarizer at an-
gle o) and the polarimetric parameters (including the total
intensity (TI) I, degree of polarization (DoP) p, and angle
of polarization (AoP) 6). Depending on the convention [9],
it can be expressed as:

In.=--(1—-p-cos(2(a—0))), (A)

DO | i

which is adopted in our work and in previous studies [7, 8]
(denoted as Conventionl), or as

L= 5 (14+p-cos(2(6 — ), (B)
which is used by pCON [5] (denoted as Convention2). Be-
sides, the Stokes parameters [2] also have two different def-
initions. Denoting I, , ,, as the polarized images cap-
tured at o1 2.3 4 = 0°,45°,90°,135°, the Stokes parameters
So,1,2 are defined as

SO = Ial + Iag = Iag + Ia4 (C)
S1 =1y, -1, and Sy =1,, —1,,

if we follow Conventionl, and defined as
SO = I(xl + Ioz3 = Iag + Ioz4 (D)
S =1,, - 1,,, and S =1,, —1,,

*Corresponding authors.

guoheng@bupt .edu.cn,

{yangyixin93, shiboxin}@pku.edu.cn,

imarik@nii.ac.jp

if we follow Convention2. Since in polarimetric imaging,
polarimetric parameters are typically estimated as

SQ S2 1 S
@ and 0 = 5 arctan(§2)a (E)

0 1

IZSOvp:

the estimated TI I and DoP p remain the same under both
Conventionl and Convention2. However, the estimated AoP
6 would be different due to the sensitivity of arctan to small

numerical errors (i.e., despite the arguments being mathemat-
. . I, -1 1., —1I - ..

x4 @2 @ a4
ically equivalent (Iag 1. = I. L., ), the limited precision

of floating-point arithmetic and the bounded range of arctan
can lead to small discrepancies, especially when dealing
with values close to the boundaries).

Here, we also provide some qualitative comparisons with
pCON [5], which follows Convention2 (the convention used
by pCON [5]). Note that both our method and pCON [5]
are retrained using polarimetric parameters according to
Convention2. Besides, we also visualize the DoP and AoP
directly, using the same visualization approach employed
by pCON [5], instead of using color maps as in our main
paper. Results are shown in Fig. A, where we can see that our
method produces fewer artifacts and noise patterns compared
with pCON [5].

B. Additional Qualitative Comparisons

In this section, we provide additional qualitative comparisons
with pCON [5], FINER [4], and S-INR [3], corresponding
to Footnote 3 of the main paper. The results are shown in
Fig. B and Fig. C.

Besides, since the polarized images provided by pCON
[5] are captured by polarization cameras, to evaluate the
generalization ability of our method, we also provide quali-
tative comparisons using the polarized images captured via
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Figure A. Qualitative comparisons with pCON [5] following the convention used by pCON [5] (Convention2). The DoP and AoP are
visualized directly, following the same visualization approach employed by pCON [5], instead of using color maps as in our main paper.

Please zoom in for better details.

rotating a polarizer [6]. The results are shown in Fig. D and
Fig. E.

C. Additional Results of Polarized Image Ren-
dering

In this section, we provide additional qualitative comparisons
on the accuracy of the rendered polarized images with pCON
[5], FINER [4], and S-INR [3], corresponding to Footnote
4 of the main paper. The results are shown in Fig. F (the
rendered polarized images at «; = 0°) and Fig. G (the
rendered polarized images at ay = 45°).

Besides, we provide the quantitative evaluations for all
selected polarizer angles (a1,2,34 = 0°,45°,90°,135°) in
Tab. A. From the results, we can see that our method outper-
forms all compared methods for all polarizer angles.

D. Additional Results of Super-Resolution
Querying

In this section, we provide additional qualitative comparisons
of the super-resolution querying performance with pCON
[5] and FINER [4], corresponding to Footnote 5 of the main
paper. Specifically, we fit the polarimetric parameters at a
resolution of 1024 x 1024 and query them at 2048 x 2048.
Note that here we cannot compare with S-INR [3], since it
supports querying only at the resolution used for fitting. The
results are shown in Fig. H.
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Figure F. Additional qualitative comparisons on the accuracy of the rendered polarized images with pCON [5], FINER [4], and S-INR [3]
(part 1). Here, we show the rendered I, (the polarized images at o1 = 0°). Please zoom in for better details.
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Figure G. Additional qualitative comparisons on the accuracy of the rendered polarized images with pCON [5], FINER [4], and S-INR [3]
(part 2). Here, we show the rendered I, (the polarized images at «r; = 45°). Please zoom in for better details.

Table A. Quantitative comparisons on the accuracy of the rendered polarized images with pCON [5], FINER [4], and S-INR [3].

PSNR?/SSIM? of L, (0°)

PSNR1/SSIM? of I, (45°)

PSNR1/SSIM? of I, (90°)

Ours ‘ pCON [5]

PSNR1/SSIMT of L, (135°)

pCON[5]  FINER[4]  S-INR[3] Ours pCON[5]  FINER[4]  S-INR[3] Ours pCON[5]  FINER[4]  S-INR[3] FINER [4]  S-INR[3] Ours
Building || 36.58/0.884 33.24/0.820 36.45/0.909 39.11/0.931 | 36.72/0.910 31.99/0.784 35.65/0.900 42.78/0.971 | 36.27/0.881 32.81/0.810 36.16/0.907 39.04/0.932 | 38.61/0.932 34.23/0.856 37.24/0.921 43.67/0.974
Firewood || 39.46/0.949 27.22/0.641 36.59/0.914 47.60/0.989 | 39.55/0.949 27.36/0.645 36.58/0.914 47.74/0.989 | 39.52/0.949 27.41/0.647 36.49/0.912 47.50/0.989 | 39.55/0.949 27.32/0.645 36.59/0.914 47.75/0.989
Grater 37.92/0.946  27.72/0.729 36.85/0.933 44.72/0.987 | 37.91/0.946 27.76/0.726 36.89/0.934 45.01/0.986 | 38.01/0.948 27.77/0.725 36.81/0.933 44.88/0.987 | 38.19/0.946 27.78/0.728 37.04/0.934  45.20/0.986
Pottery 38.04/0.947 27.82/0.734 35.62/0.915 44.41/0.985 | 38.33/0.946 28.08/0.742 35.87/0.918 44.42/0.981 | 38.55/0.949 28.25/0.753 35.87/0.917 44.90/0.985 | 38.34/0.945 28.04/0.742 35.85/0.917 44.44/0.981
Stream 35.85/0.936  32.80/0.867 34.88/0.922 39.88/0.981 | 37.18/0.939 34.21/0.879 36.37/0.931 40.81/0.981 | 37.61/0.938 34.71/0.879 36.66/0.933 42.26/0.983 | 35.88/0.932 32.93/0.864 35.03/0.924 39.51/0.980
Sunroom || 41.22/0.966 35.14/0.891 39.76/0.959 44.16/0.986 | 41.91/0.970 35.71/0.903 40.21/0.963 44.44/0.987 | 41.68/0.969 35.85/0.908 40.06/0.962 44.32/0.987 | 41.79/0.970 35.59/0.902 40.07/0.963 44.33/0.987
Valentines || 34.98/0.919 28.44/0.767 35.26/0.918 41.70/0.979 | 35.14/0.914 28.48/0.757 35.32/0.918 40.82/0.969 | 35.36/0.924 28.47/0.759 35.23/0.917 41.85/0.980 | 35.11/0.914 28.46/0.761 35.34/0.918  40.82/0.969




o

Figure H. Additional qualitative comparisons of the 2 super-resolution querying performance with pCON [5] and FINER [4].
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