
Event-guided HDR Reconstruction with Diffusion Priors

Abstract

Events provide High Dynamic Range (HDR) intensity
change which can guide Low Dynamic Range (LDR) im-
age for HDR reconstruction. However, events only pro-
vide temporal intensity differences and it is still ill-posed
in over-/under-exposed areas due to missing initial refer-
ence brightness and color information. With strong gener-
ation ability, diffusion models have shown their potential
for tackling ill-posed problems. Therefore, we introduce
conditional diffusion models to hallucinate missing infor-
mation. Whereas, directly adopting events and LDR image
as conditions is complicated for diffusion models to suffi-
ciently utilize their information. Thus we introduce a pre-
trained events-image encoder tailored for HDR reconstruc-
tion and a pyramid fusion module to provide HDR condi-
tions, which can be efficiently and effectively utilized by the
diffusion model. Moreover, the generation results of diffu-
sion models usually exhibit distortion, particularly for fine-
grained details. To better preserve fidelity and suppress dis-
tortion, we propose a fine-grained detail recovery approach
using a histogram-based structural loss. Experiments on
real and synthetic data show the effectiveness of the pro-
posed method in terms of both detail preservation and in-
formation hallucination.

1. Introduction
Extending the dynamic range of an image (usually with
low dynamic range, LDR) to record the brightness of real
scenes plausibly is particularly useful for daily photog-
raphy and computer vision tasks. High dynamic range
(HDR) imaging can be, in the most direct way, achieved
by utilizing neural networks to hallucinate missing informa-
tion in over-/under-exposed areas [4, 5, 22, 25], as shown
in Figure 1 (a), which is challenging to faithfully recover
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Figure 1. HDR image can be recovered by only using a single LDR
image (d) as input (e.g., Dille et al. [4]), which is a difficult prob-
lem as shown in (a). With only events (b) as input, event-to-image
reconstruction (e.g., EventHDR [54]) (c) recovers an HDR scene
without color. Event-guided HDR methods (e.g., HDRev [49])
(e) take both events and the LDR image as input, which recov-
ers colorful HDR scenes with moderate details. Diffusion-based
methods (e.g., Sagiri [22]) (f) take the LDR image (and optionally
the text prompt) as input showing visually pleasing results but may
have challenges in maintaining consistent contents with the orig-
inal scene. The proposed method (g) takes events and the LDR
image as input and leverages the diffusion priors to recover a plau-
sible and realistic HDR image with rich details and less distortion.

scene details without any auxiliary information. Neuro-
morphic cameras, such as event cameras, are proven to
be helpful in providing additional details for HDR pur-
pose [29, 33, 54]. Event cameras capture intensity changes
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by triggering events asynchronously, which inherently con-
tains HDR information (e.g., 120 dB for DAVIS340), and
events can be directly converted to HDR images, as demon-
strated by EventHDR [54] in Figure 1 (c). The event-to-
image reconstruction [29, 33, 54] can recover details in
over-/under-exposed regions, but fail to provide colorful re-
sults due to lacking color information.

To generate colorful HDR images, event-guided HDR
reconstructions [13, 14, 49] take both LDR image and
events as inputs, complementarily learning to predict color
and intensity in over-/under-exposed areas, as demonstrated
in Figure 1 (e). They can reconstruct HDR information, e.g.,
the cloud in the green box, and provide colorful results. Al-
though regression models are adopted to build the relation-
ship between the predicted pixel values and its neighboring
pixels, those methods cannot recover proper intensity, espe-
cially when the LDR image has large over-/under-exposed
areas. Because absolute HDR intensity (events only con-
tain thresholded radiance changes) and color information
are still missing in these regions, it is difficult for regression
models to appropriately hallucinate their values.

Diffusion models [16, 38–40] are emerging generative
models that show great potential for generating plausible
and high-quality images. Even if for ill-posed problems,
they can provide visually pleasing results thanks to the ex-
pressive power of diffusion priors. Diffusion models have
also been adopted for image restoration [24, 44, 50]. Recent
attempts, e.g., Sagiri [22], have shown the potential of dif-
fusion priors for HDR reconstruction by providing more vi-
sually realistic details in over-exposed areas, e.g., the cloud
in the sky of Figure 1 (f). However, the generated HDR im-
ages still cannot appropriately keep the fidelity of the orig-
inal scene, and additional distortion are brought into well-
exposed regions, as shown by the red box in Figure 1 (f).

To reconstruct visually pleasing and faithful HDR im-
ages with less distortion, we introduce events to provide
differential HDR intensity and adopt conditional diffusion
models [51] to compensate for the ill-posed nature of hal-
lucinating missing information and constrain the generative
model to be consistent with the original scene. Specially,
we focus on solving the following two key problems via
employing diffusion models in event-guided HDR recon-
struction: 1) Condition extraction: Since events and LDR
image are two different modalities of visual representation,
directly adopting them as conditions is non-compatible for
the conditional diffusion models to conduct effective fusion.
Inspired by the modality alignment of HDRev [49], we in-
troduce an event-image encoder and a pyramid fusion mod-
ule to fuse events and LDR image in different resolutions
and provide conditions to guide the generation process. 2)
Details preservation: Applying diffusion models to HDR
reconstruction [22, 24] suffers from fine-grained detail dis-
tortion, as shown in Figure 1 (f). Such artifacts become

more obvious when LDR images are high quality and have
large well-exposed areas. To refine the fine-grained details
and make them consistent with LDR images and events, we
design a refinement module with histogram-based structure
loss. The proposed method is validated on both synthetic
and real data and outperforms existing methods by provid-
ing fidelity-preserving HDR reconstruction, as illustrated
in Figure 1 (g), with the following technical contributions:
• integrating events and the conditional diffusion models to

recover missing information faithfully;
• adopting the pretrained event-image encoder and pyramid

fusion to effectively apply conditions; and
• designing the refinement module and histogram-based

structure loss to further strengthen fine-grained details.

2. Related works
Image-based HDR reconstruction Many approaches
leverage the capabilities of neural networks to directly
hallucinate HDR information from training data, such
as CNNs [5, 6, 9], Generative Adversarial Networks
(GANs) [41], and diffusion models [7, 22]. Liu et al. [25]
incorporates the LDR image formulation pipeline into its
hallucination process to perform step-by-step prediction.
For a more comprehensive view, we refer to GTA-HDR [2].
Since information is unavoidably missing in over-/under-
exposed areas, the above methods only rely on hallucina-
tion, which may not correspond to real scenes.
Event-based HDR reconstruction Benefiting from the
HDR property of event cameras, previous works recon-
struct HDR images from events with recurrent neural net-
works [33, 34, 54] or GANs [29, 42]. Since events only
record logarithmic irradiance changes, it’s difficult to re-
construct color images. To reconstruct color HDR images,
Han et al. [13, 14] adopted a hybrid camera system to cap-
ture events and frame, enabling event-guided HDR recon-
struction. Yang et al. [49] treated events and frame as dif-
ferent modalities and proposed multi-modalities alignment
and fusion to provide HDR videos. Other methods [27, 36]
incorporate events and bracketed exposure for HDR recon-
struction, while long-exposed images bring blurry artifacts.
The proposed method takes events and LDR image as input,
incorporating diffusion models to compensate for realistic
and faithful information in over-/under-exposed areas.
Generative priors Generative Priors capture the underly-
ing data distribution, enabling the generated images to fol-
low real-world image distribution. GAN [10] has shown
its potential to leverage generative priors for image restora-
tion [20, 21, 31]. Recently, diffusion models [16, 38–40]
have widely adopted as effective generative priors for pro-
ducing realistic images [30, 35, 43, 51], which also demon-
strate strong potential for image restorations [24, 44, 50],
specifically, for HDR image reconstruction from bracketed
exposure [12, 17, 47]. There are some attempts [11, 22] to
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Figure 2. Pipeline of the proposed method consists of three parts: diffusion model and denoising process (green part), event-image
conditioning (blue part), and detail refinement (orange part). The blue part fuses LDR image and events to generate injected features for
Denoiser as described in Section 3.2. The green part adopts the injected features as conditions to estimate noise from latent zt step by step
with fixed pretrained parameters. To refine the distortion of denoised images, the refinement module in the orange part, whose architecture
is shown on the right, is proposed to leverage the HDR features and denoised latent z0. Considering the uncertainty of diffusion results
in color and brightness, we introduce structure loss, which adopts adaptive Ground Truth (GT) as the supervision target, as described in
Section 3.3. After refinement, we obtain a plausible and realistic refined image without distortion.

take advantage of diffusion models to generate HDR images
from single LDR image, while it cannot provide faithful re-
construction due to the inevitable dynamic clipping.

3. Proposed Method
Section 3.1 introduces basic concepts about diffusion mod-
els and event cameras. The pipeline of the proposed method
is illustrated in Figure 2. The green part is the pretrained
latent diffusion model, which performs denoising in la-
tent space step by step with the injected feature from the
blue part. The blue part is the proposed event-guided con-
ditioning and generation process, which adopts an event-
image encoder and a pyramid fusion to utilize events and the
LDR image efficiently and effectively, as described in Sec-
tion 3.2. The orange part is the fine-grained detail enhance-
ment based on the Variant Auto Encoder (VAE) decoder,
which learns to refine fine-grained details by the proposed
histogram-based structure loss as described in Section 3.3.
Training details are described in Section 3.4.

3.1. Preliminary
Diffusion models Diffusion models [16, 35, 39] can gen-
erate realistic high-quality images by diffusing and denois-
ing processes. Latent diffusion models [35] are a type
of diffusion models that perform those processes on latent
space. During training, the latent diffusion models project
the clean image into the latent space with a VAE encoder as
z0, then diffuse z0 by adding Gaussian noise for n steps to
get the noisy latent zn. Adding noise in one step is as:

zn =
√
anzn−1 +

√
1− anϵn−1, (1)

where n ∈ [1, N ] means the n-th diffusion step, N is the
total diffusion steps, ϵn ∼ N (0, I) is the added noise, an is

the pre-defined parameter of the noise scheduler. Defining
an =

∏n
i=1 ai, the closed form equation of Eq. (1) [16] is:

zn =
√
anz0 +

√
1− anϵ, (2)

where ϵ ∼ N (0, I). The denoising process trains a de-
noiser ϵθ to estimate the noise ϵ usually by minimizing
Mean Square Error (MSE) Ln,z0,ϵ = ∥ϵ − ϵθ(zn, n)∥. As
the variable zn will be an approximately standard Gaussian
distribution when n is large enough, during inference, the
denoising process often starts from an i.i.d. noise zN and
generates a clean image z0 using ϵθ over N steps.
Event triggering and stacking Event cameras trigger an
event (t, x, y, p) when illuminance changes of pixel (x, y)
in the logarithm domain over a predefined threshold η in
time t, where the polarity p ∈ {−1, 1} indicates the de-
crease and increase of the illuminance. Mathematically, an
event is generated when the following inequation occurs:

∥log Ix,y(t)− log Ix,y(tref)∥ ≥ η, (3)

where Ix,y(t) is the illuminance at time t, Ix,y(tref) is the
reference illuminance level, tref is the last event triggered
time of pixel (x, y), η is a pre-defined event threshold.
We convert the stream-like events to tensors using voxel
grid [53], which encodes temporal information in a C-
channel 3D volume by discretizing event timestamps into C
temporal bins. Following Rebecq et al. [33, 34], k-th event
(tk, xk, yk, pk) distributes its polarity pk to the two closest
temporal bins related to its normalized timestamp by:

Ex,y
j =

∑
xk=x,yk=y

pk max (0, 1− |t̃k − j|), (4)

where t̃k = C−1
∆t (tk − t0) is the normalized timestamp,

∆t = maxk(tk) − t0 is the time span of events, t0 is the
start timestamp, and j ∈ [0, C − 1] is the index of the bin.
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Figure 3. Pipeline of the event-guided conditioning process, with comparison to conditioning using HDRev [49] restored image. Directly
concatenating events and LDR image cannot fully utilize events, thus we introduce an event-image encoder to fuse them as shown in the
orange part. The HDRev [49] restored images by decoding HDR features can serve as input to the embedding module, as shown in the
yellow part. The proposed pyramid fusion module, as shown in the blue part, fuses different levels HDR features to provide conditions.

3.2. Event-guided Conditioning and Generation
To hallucinate missing information for HDR reconstruction,
previous methods mainly come in two ways: adopting bet-
ter hallucination models (e.g., diffusion models [22]) or in-
troducing HDR sensors (e.g., event cameras [13, 14, 49]).
Diffusion models generate high-quality and realistic images
by modeling real-world image distributions with diffusion
priors. Event cameras provide differential HDR intensity,
making events well-suited as conditions for diffusion mod-
els to generate more accurate details in over-/under-exposed
areas, thereby compensating the dynamic range of LDR im-
ages. Thus we propose to leverage both event cameras and
diffusion models to hallucinate realistic HDR images to be
more consistent with real scenes.

To generate images corresponding to conditions, condi-
tional models [18, 51] are proposed to generate features in-
jected into specific layers of the well-trained denoiser. Con-
trolNet [51] is one of the widelyconditional models for im-
age restoration [24, 44, 45], which generates and injects
features for each down-sample and middle layers of the de-
noiser. As illustrated in the interaction between the blue and
green parts of Figure 2, we perform feature injection simi-
lar to ControlNet.In the green part, we utilize Stable Diffu-
sion [35] V1.5 as the pretrained denoiser ϵθ to denoise from
the initial latent zN step by step. The generated image is ob-
tained by decoding the estimated initial latent ẑ0 with VAE
decoder. With an image-like input, ControlNet employs an
embedding module to generate conditions, then adopts a
control module to obtain injected features. However, it is
challenging for the embedding module to effectively fuse
LDR image with events and extract useful information.

Events record temporal intensity changes, making them
distinct from LDR images. Directly concatenating stacked
events E and LDR images ILDR together as the input for
the embedding module Tcon introduces HDR information,
where the conditioning process1 is:

EConCond(ILDR, E) = Tcon([ILDR, E]), (5)

[, ] denotes concatenation. But it cannot fully utilize HDR
information encoded in events, e.g., decoration and cable

in over-exposed areas cannot be accurately reconstructed in
Figure 4 (d). Therefore, a specifically designed HDR infor-
mation extraction model is needed. HDRev [49] performs
event-guided HDR reconstruction through representation
alignment and feature fusion, which addresses the modality
gap between events and LDR images. It performs represen-
tation alignment through pre-training to obtain modality-
specific encoders as shown in the orange part of Figure 3.
The LDR image and events are encoded into modality-
specific features, represented by green features (LDR im-
age) and yellow features (events), respectively. Those two
features are fused through the fusion module to obtain HDR
features. The restoration process can be written into:

Irestored = B(H(ILDR, E)), (6)

where B and H are the decoder and encoder in HDRev [49].
The restoration process utilizes events to recover more de-
tails, as shown by Figure 4 (e), which offers a better re-
construction of the decoration and cable than (d). The intu-
itive way to better utilize events for conditioning is adopting
Irestored as input for the embedding module Trest as shown in
the yellow part of Figure 3. The conditioning process1 is:

ERestCond(ILDR, E) = Trest(B(H(ILDR, E))). (7)

Diffusion models improve image quality as shown by the
improved shape and color of the table in Figure 4 (f) com-
pared to (e). Adopting Irestored as conditions ( “RestCond”)
better utilizes events and provides more details than “Con-
Cond”, e.g., the decoration in Figure 4 (f) is better than (d).

Although HDRev is an encoder-decoder architecture, the
fusion between LDR image and events is performed only in
the encoder. Applying Irestored as conditions not only suffers
from a decoder-encoder redundant computation Trest(B(·))
as shown in the yellow part of Figure 3, but also fails to
reconstruct details from events, e.g., the shape of table in
the red box of Figure 4, and is difficult to adjust the proper
brightness of over-exposed areas, e.g., the cloud in Fig-
ure 1 (e). The embedding module Trest may misunderstand

1More details are provided in the supplementary materials.



LD
R

 im
age

Events

F F F F

© © ©©

C
ontrol

M
odule 𝒞

H
D

R
 Features

Event-image Encoder ℋ Proposed: Pyramid Fusion 𝒫
HDR Features

𝑧!

gather / disperse

©

(a) LDR (b) Events (e) Restored (f) RestCond (g) Proposed(c) GroundTruth (d) ConCond

Event Features

LDR Features

R
estored C

ontrol
M

odule 𝒞

RestCond: Decoder + Embedding

𝑧!
Embedding 𝒯!"#$

H
D

R
 Features

Decoder ℬ

Legends

F

data flow
convolution
down-sample
up-sample
skip-connection
concatenation
modality fusion

LDR Events Adapted GTW/o Structure W/ StructureGround Truth W/o 

Figure 4. Comparison with different conditioning ways: directly concatenating events and LDR image (“ConCond”) and HDRev [49]
restored image (“RestCond”). “ConCond” (d) cannot fully utilize events in over-exposed areas to reconstruct cable. Illustrated by “Rest-
Cond” (f), the unsatisfactory results of decoration and table in “Restored” (e) failed to provide HDR information for conditioning in
over-exposed areas. The proposed conditioning module can restore missing information as depicted in (g).

these unsatisfactory areas as shown by the shape of the dec-
oration in the red box of Figure 4 (f).

To mitigate issues of poor brightness adjustment in
HDRev, and leverage its advantage in event-image fusion,
we adopt HDR features from each layer of its event-image
encoder to provide conditions. Directly adopting HDR fea-
tures as conditions is not only more efficient, because of
removing the redundant decoder-encoder process, but also
more effective, because of avoiding introducing unsatisfac-
tory reconstruction from the decoder B. However, the HDR
features are pyramidal, in which different levels of visual
information are encoded separately. To fuse different level
HDR features, we propose a pyramid fusion module P as
shown in the blue part of Figure 3, which fuses different
level features with down-sample layers and feature concate-
nation to provide conditions. More accurate details and col-
ors can be recovered with it as shown in Figure 4 (g). The
proposed conditioning process E consists of an event-image
encoder and pyramid fusion module, denoted by:

E(ILDR, E) = P(H(ILDR, E)). (8)

Then the predicted noise is ϵθ(zn, n, C(E(ILDR, E)), where
C is the control module derived from ControlNet [51]. With
the pretrained denoiser ϵθ, we are able to train the control
module C and conditioning process E to hallucinate HDR
images by minimizing the noise loss:

Ln,z0,ϵn = ∥ϵn − ϵθ(zn, n, C(E(ILDR, E)))∥2. (9)

3.3. Fine-grained Detail Refinement
Although diffusion models can reconstruct realistic HDR
images, it suffers from distortion, especially for fine-
grained details as shown in Figure 1 (f) and Figure 5 “W/o
Refinement”. Therefore, we aim to introduce information
from events and LDR image to refine those distortion. Typi-
cally, we adopt HDR features from the event-image encoder
for refinement. As shown in the orange part of Figure 2, our
refinement module is a decoder D in which the up-sample
layers are initialized from the VAE decoder. It fuses HDR
features H(ILDR, E) with latent z0 to provide the refined
HDR image H:

H = D(H(ILDR, E), z0). (10)

By training the refinement module with the Ground Truth
(GT), we can refine some distortion as shown in Fig-
ure 5 “W/o Structure”. Due to the inconsistent color be-
tween GT and diffusion results as illustrated in Figure 5,
applying GT as a supervision target brings color artifacts
similar to regression-based methods [25, 49] as depicted in
the red box of Figure 5 “W/o Structure”. Those artifacts
come from the discrepancy between the deterministic GT
and the uncertainty in diffusion results during the training
process of refinement. 2 Additionally, it also depicts that the
details in diffusion results have been wiped (the road curb
in the red box) after this refinement. Because it is easier
for the refinement to minimize the total loss by reducing the
brightness and color difference than the detail difference.

Meanwhile, although the diffusion results suffer from
distortion, they already have visually pleasant brightness
and color consistent with LDR images. Therefore, we tend
to maintain the brightness and color properties of diffusion
results and only focus on detail refinement by introducing
local histogram matching [46] to adjust the GT to serve as
a new supervision target. Local histogram matching [46] is
able to adjust the pixel intensity distribution to match the
histogram of a target image for each local area, which is
suitable for adjusting only color and brightness, and main-
taining details of GT. Adopting local histogram matching to
adjust ground truth image O to diffusion result Hdiff is as:

Oadj = Hist(O,Hdiff). (11)

Our histogram-based structure loss adopts the adjusted im-
age Oadj as ground truth and is composed of two losses. The
first one is MSE loss:

LMSE(H,Oadj) = ∥H −Oadj∥2, (12)

and the perceptual loss Lperc based on the feature maps ex-
tracted by the pretrained VGG-16 [37] network:

Lperc =
∑
l

∥ϕl(H)−ϕl(Oadj)∥2 + ∥Gϕ
l (H)−Gϕ

l (Oadj)∥2,

(13)

2Diverse diffusion results are shown in the supplementary materials.
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LDR Events Adapted GTW/o Structure W/ StructureGround Truth Ours DiffusionFigure 5. Validation for the effectiveness of the structure loss. With only conditioning and diffusion process, the results of “W/o Refine-
ment” suffer from distortion as shown in the green box. Training the refinement module with ground truth, some distortions are refined, but
introducing unnatural saturation adjustment and unsatisfactory detail prediction as shown in the red box of “W/o Structure”. We introduce
local histogram matching [46] to adjust the brightness and color of ground truth to diffusion results, making the refinement module focus
on refining the details. The adapted ground truth is shown in “Adapted GT”. As shown in “Proposed”, by adopting adapted ground truth as
a supervision target, the refinement module with structure loss refines distortion with more natural colors and details.

where ϕl is the extracted feature from l-th layer of VGG-16,
Gϕ
l is the Gram matrix of ϕl. Our structure loss is:

Lstruct = αLMSE + βLperc, (14)

where α = 0.01, β = 0.001 are the balance weights of dif-
ferent terms. Using Oadj as the supervision target enables
the refinement module to focus on fine-grained detail re-
finement as illustrated in Figure 5 “Complete”, in which the
building is undistorted and the road curb is natural.

3.4. Training details

As a large number of paired events, LDR image, and GT is
needed for training, we adopt 733 HDR images collected
by Yang et al. [49] and follow the same data generation
process to generate training and testing data with resolution
(512, 512). We first simulate 733 HDR videos with random
global motion by generating random camera motion trajec-
tories [3]. We utilize the event simulator [32] and virtual
camera [6] to simulate the events and LDR images, respec-
tively. The dataset generated from 733 images is separated
into training and testing following the setting of Yang et
al. [49], while 663 for training and 70 for testing. During
training, we randomly over- or under-exposed 20% to 50%
pixels of the HDR images to generate LDR images.

Other implementation details. The proposed method
is implemented with the Pytorch framework and runs on a
single NVIDIA GeForce RTX 3090 GPU. For optimization,
we use the ADAM optimizer [19] with a linear decay learn-
ing rate scheduler starting from step 0 and an initial learning
rate of γ = 10−5. DDIM noise scheduler is adopted both
in training and sampling, with training steps N = 1000
and linear-scaled beta schedule. We adopt C = 5 same
to HDRev [49] to apply their pretrain model. During sam-
pling, we adopt classifier-free guidance with guidance scale
u = 1.5 and inference steps n = 9 to obtain our results.

Table 1. Quantitative evaluation of synthetic data on dataset col-
lected by Yang et al. [49]. The red metric shows the best perfor-
mance. ↑ (↓) means higher (lower) is better.

PSNR↑ SSIM↑ LPIPS↓ CIEDE↓ FID↓ NIQE↓
Liu et al. [25] 18.35 0.771 0.276 15.33 78.41 4.02

EventHDR [54] 11.04 0.334 0.447 23.44 182.11 4.58
Sagiri [22] 12.50 0.453 0.414 17.67 83.46 5.35

HDRev [49] 14.05 0.619 0.238 17.69 46.23 3.88
NeurImg [14] 18.53 0.621 0.338 17.42 105.07 4.04
Dille et al. [4] 19.73 0.820 0.243 9.76 76.83 4.22

Ours 25.67 0.926 0.099 6.01 27.09 3.86

4. Experiments
The comparison with existing methods including four cat-
egories: event-based EventHDR [54], single-image CNN-
based Liu et al. [25] and Dille et al. [4], single-image
diffusion-baed Sagiri [22], and event-guided NeurImg-
HDR [14] and HDRev [49]. Experiments are conducted
both on synthetic data and real data, as described in Sec-
tion 4.1 and Section 4.2 respectively.

Metrics For fidelity preserving, we adopt reference met-
rics including peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), the perceptual error with learned percep-
tual image patch similarity (LPIPS) [52], the Frechet Incep-
tion Distance (FID) [15], and the Color Difference Evalua-
tion 2000 (CIEDE) [26], respectively. A non-reference met-
ric named the Natural Image Quality Evaluator (NIQE) [28]
is adopted to evaluate the image quality.

4.1. Evaluation on Synthetic Data
The quantitative evaluation is reported in Table 1. The pro-
posed method outperforms the previous methods in terms
of fidelity and structure preservation as shown by reference
metrics. Also, ours image quality outperforms other meth-
ods, as indicated by NIQE [28]. The qualitative evaluation
is illustrated in Figure 6. EventHDR [54] reconstructs faith-
ful grayscale HDR images without color. Liu et al. [25]
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Figure 6. Qualitative evaluation of synthetic data on dataset collected by Yang et al. [49].

Figure 7. Qualitative evaluation of real data on DSEC [8].

Table 2. Quantitative evaluation (NIQE [28]↓/MANIQA [48]↑/QualiClip [1]↑) of real data. Blue metrics indicate the second-best.

Dataset Liu et al. [25] EventHDR [54] Sagiri [22] HDRev [49] NeurImg [14] Dille et al. Ours

DSEC [8] (3.65/0.466) (4.00/0.270) (5.87/0.617) (3.41/0.402) (3.80/0.570) (3.63/0.467) (3.12/0.693)
HES-HDR [14] (5.67/0.335) (5.52/0.203) (6.40/0.576) (5.01/0.322) (4.61/0.442) (5.72/0.367) (4.81/0.530)

maintains details from LDR images but is hard to compen-
sate for missing information. Sagiri [22] adopts diffusion
models to provide high-quality images but fails to preserve
consistency with inputs. NeurImg [14] has difficulty com-
bining events with LDR image to predict over-exposed ar-
eas and has noise-like artifacts. HDRev [49] recovers HDR
information, while it is difficult to deal with brightness and
color adjustment in over-/under-exposed areas. Our method
provides natural results and outperforms other methods both
on missing information generation and fidelity preservation.

4.2. Evaluation on Real Data
Comparison on DSEC dataset DSEC [8] is a stereo
event camera dataset for driving scenarios. We choose
parts3 of data recording HDR scenes as our testing data.

3More details are provided in the supplementary materials.

The quantitative evaluation using non-reference metrics is
shown in Table 2, indicating that the proposed method
achieves higher image quality than others. The qualita-
tive evaluation of the DSEC dataset is depicted in Fig-
ure 7. EventHDR [54] fails to restore grayscale results. It’s
challenging for Liu et al. [25] and Sagiri [22] to halluci-
nate missing information. NeurImg [14] and HDRev [49]
have problems utilizing the HDR information provided by
events. The proposed method not only provides realistic
and faithful results compared with other methods but also
exhibits generation ability even with fewer events.
Comparison on HES-HDR dataset HES-HDR [14] is
a hybrid event and spike HDR dataset. Its hybrid event
dataset is suitable for our task. Although the non-reference
metrics are not the best, we show better recovery ability as
shown by qualitative evaluation3. The qualitative evalua-



EventHDR [49]Liu et al. [22]HDRev [44] NeurImg [13]Events LDR Ours Sagiri [20]

增加intrinsicHDR和EvLight的结果
写成：Dille et al. [4]和Liang et al. [23]
这个直接横着加就OK

Liang et al. [23]Dille et al. [4]
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Table 3. Ablation studies of synthetic data on the dataset collected
by Yang et al. [49]. “Proposed*” is calculated with adjusted GT
Oadj. The red metric shows the best performance among different
ablation parts. ↑ (↓) means higher (lower) is better.

PSNR↑ SSIM↑ LPIPS↓ CIEDE↓ FID↓ NIQE↓
ConCond 22.60 0.749 0.200 7.48 48.14 4.23
RestCond 20.79 0.725 0.247 9.33 61.74 4.20

W/o Pyramid 21.62 0.728 0.223 8.67 46.99 3.89
W/o Refinement 23.29 0.77 0.170 7.29 38.13 3.63

W/o structure 26.65 0.933 0.093 5.67 25.90 3.90
Proposed 25.67 0.926 0.099 6.01 27.09 3.86

Proposed* 29.77 0.939 0.080 3.79 22.62 3.86

tion of the HES-HDR dataset is depicted in Figure 8, which
shows similar conclusions as DSEC [8]. Besides, even with
unnatural color-shifted LDR image, our results have a more
natural appearance and better fidelity.

4.3. Ablation Study

Our ablation study includes two parts, different condition-
ing processes, and different refinement targets. The quan-
titative evaluations of different conditioning processes are
shown in the upper part of Table 3. “’ConCond” and “Rest-
Cond” are as described in Section 3.2. “W/o Pyramid” rep-
resents removing the pyramid fusion module and adopting
the lowest HDR features as conditions. The proposed one
(“W/o Refinement”) outperforms others. The qualitative
evaluations in Figure 4 show that the proposed one can bet-
ter utilize events and LDR information to provide faithful
and realistic images. The quantitative evaluations of refine-
ment and structure loss are depicted in the lower parts of
Table 3. The ablation of removing the refinement module
is shown by “W/o Refinement”. Compared with diffusion-
only method “W/o Refinement”, the refinement module im-
proves the fidelity in terms of supervised metrics. Employ-
ing GT as a supervision target (“W/o structure”) makes the
reference metrics a little better than “Proposed”. However,

due to the different supervision targets, directly comparing
the proposed method with GT cannot show our structure-
preserving capacity. Therefore, we include “Proposed*”,
which is calculated with the adjusted GT Oadj. The image
quality reflected by NIQE of “Proposed” is better than “W/o
structure”. As shown by Figure 5, more natural and higher-
quality images without distortion can be generated with the
proposed refinement module.

5. Conclusion
In this paper, we present a fidelity-preserving HDR recon-
struction method based on diffusion models. Our method
consists of two parts, event-guided conditioning generation
and fine-grained detail refinement. We utilize an event-
image encoder and a pyramid fusion module to efficiently
and effectively fuse events and images, providing HDR con-
ditions to guide the diffusion process and generate missing
information. A refinement module with histogram-based
structure loss is proposed to tackle distortion without chang-
ing the brightness and contrast. Experiments on both syn-
thetic and real data demonstrate the generation and fidelity
preservation ability of our method.

Limitations. Since diffusion models have uncertainty in
the generation process, it is difficult to apply our method
for video generation, for the challenge of maintaining con-
sistency over consecutive frames.
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single-image hdr reconstruction. In ECCV, 2024. 1, 6, 10

[5] Gabriel Eilertsen, Joel Kronander, Gyorgy Denes, Rafał K
Mantiuk, and Jonas Unger. HDR image reconstruction from
a single exposure using deep CNNs. ACM Transactions on
Graphics (Proc. of ACM SIGGRAPH Asia), 2017. 1, 2

[6] Yuki Endo, Yoshihiro Kanamori, and Jun Mitani. Deep re-
verse tone mapping. ACM Transactions on Graphics (Proc.
of ACM SIGGRAPH Asia), 2017. 2, 6

[7] Ben Fei, Zhaoyang Lyu, Liang Pan, Junzhe Zhang, Weidong
Yang, Tianyue Luo, Bo Zhang, and Bo Dai. Generative dif-
fusion prior for unified image restoration and enhancement.
In CVPR, 2023. 2

[8] Mathias Gehrig, Mario Millhäusler, Daniel Gehrig, and Da-
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In the supplementary material, we provide more imple-
mentation details and comparison results. The details of
different conditioning settings are described in Section 6.
More details about our networks are provided in Section 7.
The dataset extraction strategy of DSEC [8] is illustrated in
Section 8. The training details are shown in Section 9. We
provide more qualitative comparisons of ablation studies in
Section 10. We show the diverse diffusion results in Sec-
tion 11 to support the proposed structure loss as described
in Section 3.3. We include human study to further support
our results in Section 12. Efficiency comparison of exist-
ing methods is illustrated in Section 13. More results on
synthetic and real data are provided in Section 14 and Sec-
tion 15. Finally, we provide the consecutive results of our
method to show its limited performance on video generation
in Section 16.

6. Different conditioning settings
In Section 3.2, we introduce two other kinds of conditioning
settings, concatenating LDR images and events, and adopt-
ing restored images as conditions, respectively. In this sec-
tion, we provide more details about those two settings.

ConCond: concatenating LDR images and events. As
described in Section 3.2 by Equation (5), one of the condi-
tioning settings is directly concatenating LDR images and
events as the input for embedding module TConCond, which
is denoted as “ConCond”. The architecture of the embed-
ding module is shown in Figure 9. The input condition
channel K is set to 3 + C, in which 3 is the number of
channels of LDR image and C is the number of channels
of stacked events voxel described by Equation (4). The
embedding module TConCond aligns the shape of the inputs
with latent space, which consists of one convolutional layer,
three down-sample layers, and a final convolutional layer.
Each down-sample block is composed of two convolutional
layers with a kernel size of 3 × 3, where the stride is 1 and
2, respectively. The results of embedding module TConCond
are provided to the control module C to control the diffusion
process as described in Equation (5) and Equation (9).

†This work is done during Yixin’s internship at SenseTime.
∗Corresponding author.
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Figure 9. Architecture of embedding module TConCond (K = 3+C)
and TRestCond(K = 3). The number in each box is kernel size,
output channel, and stride, respectively.

RestCond: adopting restored images As described in
Section 3.2 by Equation (7), another conditioning setting
is applying restored image provided by HDRev [49] as the
input for embedding module TRestCond, denoted as “Rest-
Cond”. The embedding module TRestCond for “RestCond” is
modified from embedding module TConCond by setting the
input condition channel K to 3, as illustrated in Figure 9,
in which 3 is the number of channels of the restored image.
The control module C takes embedding results ERestCond in
Equation (7) as input to control the denoising process as il-
lustrated by Equation (9).

7. Networks details

Event-image Encoder H The architecture of the event-
image encoder H in our implementation is derived from the
original implementation of HDRev [49] as shown in Fig-
ure 3. The modality-specific encoders of events and LDR
images follow the original implementation, and the param-
eters are loaded from the released files. For the modality fu-
sion module, we remove the handcrafted confidence map in
the original implementation to avoid filtering useful infor-
mation. The architecture remains the same as the original,
and all the parameters are initialized from released files.

Control Module C The architecture of control module
C follows the architecture of the denoiser encoder by re-
placing input latent zt with the summation of zt and
condition E(ILDR, E). To simplify training, we initialize
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Figure 10. Architecture of feature fusion layer in refinement module D. A fusion layer is applied before each up-sample layer in the
original VAE.

the parameters of our control module C using the “con-
trol v11e sd15 ip2p” version of ControlNet [51].

Refinement module D The refinement module D de-
codes the estimate latent z0 to undistorted HDR image
H with the HDR features from the event-image encoder.
Therefore, we modify the original VAE decoder imple-
mentation to add HDR features into its decoding process.
Specifically, we add a feature fusion layer to each up-
sampler layer of the VAE decoder, which fuses the HDR
feature with the original VAE decode feature by the convo-
lutional layers and residual layers as shown in Figure 10.
K1 and K2 are the dimensions of input HDR features and
decoder features from the original VAE implementation, re-
spectively. Only the added fusion layers and convolutional
output layers are trained in our experiments.

Noise scheduling For the noise scheduler, we adopt
DDIM scheduler as described in Section 3.4 and set the
number of training timesteps to 1000. The noise is added
using a scaled linear beta schedule ranging from 0.00085
to 0.012. The model predicts pure noise (epsilon) during
denoising, following the standard DDPM approachβı

8. DSEC [8] dataset

DESC [8] is a dataset for driving scenarios, which contains
paired events and LDR images in different light conditions.
We specifically choose 6 HDR scenes from its test dataset
as our test dataset: “interlaken 00 a”, “interlaken 00 b”,
“interlaken 01 a”, “zurich city 13 a”, “zurich city 13 b”,
“zurich city 15 a”, respectively. For “zurich city 15 a”,
we only choose the 960th frame to the 1059th frame since
it is not a typical HDR scene.

9. Training details
Dataset preparation We generate the synthetic dataset
for training and testing as described in Section 3.4. After
obtaining the generated HDR images and events, we gener-
ate LDR images from HDR images with the image formu-
lation pipeline, which consists of exposing, dynamic range
clipping, and quantization. We randomly generate exposure
time t to let x% pixel to be over-/under-exposed, and x is
uniformly sampled in [0.2, 0.5]. In dynamic range clipping,
the values larger than 1 are clipped to 1. For quantization,
we quantize the original float values into 8 bit integer in
[0, 255] and remap them to [0, 1] as the final input. In this
way, we obtain the LDR image L from HDR image O by:

L = ⌊Clip(O · t,max = 1) ∗ 255⌋/255 (15)

Histogram matching To refine the distortion existing in
our diffusion results (shown by “W/o Refinement”), we
adopt local histogram matching [46] to reduce the bright-
ness and color gap between diffusion results and ground
truth. To perform local histogram matching [46], we first
split the whole image into 2Ph × 2Pw patches, while Ph =
Pw = 8 in our experiments. For each 2 × 2 patch, we
calculate the adjustment parameters based on original his-
togram matching, which are q paired pixel values defining
the brightness mapping from the original image to the des-
tination image. We directly record the paired pixel value of
the original image and destination image as the adjustment
parameters. We set q = 6 in our experiments. To smooth
the parameters of nearby patches, a convolutional layer with
5×5 Gaussian kernels is applied to the adjustment parame-
ters with shape Ph ×Pw. The smoothed adjustment param-
eters are applied to each patch to obtain the final adjusted
results. We perform local histogram matching for color im-
ages, which is implemented by separately processing each
channel.

The adjusted examples are shown in Figure 11. The pur-
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Figure 11. Adapted GT results on training data. Although our dif-
fusion results (shown by “W/o Refinement”) suffer from distortion
as shown in the green box, it can serve as a good guidance to ad-
just the original ground truth. Adjusting the color and brightness
with the histogram also improves the contrast and color as shown
in the red box.

pose of our histogram matching is to reduce the color and
brightness gap between the supervision target and diffusion
results, which is already achieved as shown in Figure 11.
Besides, the original ground truth suffers from color shifting
in the first and third row, and low contrast by tone mapping
in the second row. Benefiting from diffusion priors embed-
ded in our diffusion results (shown by “W/o Refinement”),
the adapted GT images have better contrast and color, which
can improve the visual quality of the final refined results.

10. Ablation study

Quantitative comparison on iteration steps The im-
pacts of different iteration steps are shown in Table 4. Bal-
ancing performance and inference speed, we finally select 9
iterations.

Quantitative comparison on loss hyperparameter The
hyperparameter experiment for Equation (14) with α =
0.01, β = 10−4 (Param 1) and α = 0.01, β = 0.01 (Param
2) are shown in Table 4.

Table 4. Quantitative comparison on iteration steps

PSNR↑ SSIM↑ LPIPS↓ CIEDE↓ FID↓ NIQE↓
Iteration-5 24.96 0.918 0.111 6.39 29.70 3.83
Iteration-9 25.67 0.926 0.099 6.01 27.09 3.86

Iteration-15 25.89 0.928 0.096 5.90 26.43 3.88

Param 1 24.85 0.906 0.128 6.56 34.15 3.93
Param 2 24.76 0.909 0.124 6.61 32.01 3.93

Table 5. Efficiency comparison of ablation studies.

FLOPs (G) Params (M) Time (s)

ConCond 8387.563 1270.09 1.33
RestCond 9207.416 1328.03 1.42

W/o Refinement 9122.417 1320.32 1.40
Ours-complete 10380.843 1349.31 1.41

Qualitative comparison on conditioning The qualitative
evaluation of different conditioning and generation pro-
cesses is illustrated in Figure 12. Directly concatenating
events and LDR image, denoted by “ConCond”, cannot
well-utilize both LDR image and events to provide accu-
rate and sufficient details as depicted by the first row and
the green box of remaining rows in Figure 12. HDRev [49]
fuses LDR image and events to provide better details as
shown by “Restored” in Figure 12, while severe artifacts
exist. And it is difficult to reconstruction faithful details in
high-frequency and significantly over-exposed areas, e.g.,
the red box of the first row in Figure 12. Employing re-
stored results as condition, adopting restored image as con-
dition, indicated by “RestCond”, suffers from information
lost exists in “Restored” as highlighted in the red box of the
first row and the green box of the third row in Figure 12
Also, the artifacts in “Restored” also influence “RestCond”
to provide unfaithful results as shown by the green box of
the second row in Figure 12. Leveraging the HDR features
provided by the event-image encoder as described in Sec-
tion 3.2, the proposed method recovers faithful and colorful
results by making better use of input LDR image and events
with the proposed conditioning and generation method.

Qualitative comparison on structure loss The qualita-
tive evaluation of structure loss is depicted in Figure 13.
Our diffusion results (shown by “W/o Refinement”) may
exist distortion as shown by the green box in Figure 13. To
refine the distortion and provide natural results, we perform
fine-grained detail refinement with the structure loss. With
the proposed structure loss, images with higher contrast and
more details can be generated, as indicated by the green box
of the first row, and the red box in the second and third row
of Figure 13. Besides, introducing structure loss reduces
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Figure 12. Qualitative comparisons on different conditioning and generation processes as described in Section 3.2. It is hard for “ConCond”
to integrate events and LDR image to provide faithful results. “Restored” [49] effectively extracts details by fusing events and LDR image,
while its results exist some artifacts. It also struggles with compensating for large over-exposed areas. “RestCond” provides better details
than “ConCond” in nearly well-exposed areas, but it is misled by “Restored” to provide unsatisfactory results in large over-/under-exposed
areas. The proposed method exploits the information in events and LDR image to provide faithful and colorful recovery results.

the difficulty of color prediction, as discussed in Section 11,
which may lead to unnatural color transition as shown in the
green box of the second row and red box of the fourth row
in Figure 13. Introducing structure loss not only reduces
the difficulty of learning but also provides pleasant visual
results with natural contrast.

Efficiency comparison We calculate the Floating Point
Operations Per Second (FLOPs), the total parameters

(Params), and the running time of all ablation studies, as
shown in Table 5. The ablation studies of structure loss
share the same pipeline, which is the same as our complete
model. The proposed conditioning and generation method
is more efficient than “RestCond”, which indicates that re-
moving redundant decoder-encoder modules improves the
efficiency of leveraging events and LDR image information.
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Figure 13. Qualitative comparisons on structure loss as described in Section 3.3. More natural images with higher contrast and better color
appearance can be reconstructed with the proposed structure loss.

Table 6. Efficiency comparison of existing methods.

FLOPs (G) Params (M) Time (s)

Liu et al. [25] 451.004 29.03 0.03
EventHDR [54] 1229.133 3.14 0.17
NeurImg [14] 301.385 37.39 0.08
HDRev [49] 821.551 57.94 0.79
Sagiri [22] 29327.032 1328.23 5.52

Ours 10380.843 1349.31 1.41

11. Diverse diffusion results

To demonstrate the uncertainty of our diffusion process,
we randomly sample different results with the same input
events and LDR image but different initial noise. The re-
sults are shown in Figure 14. Even with the sample input,
the generation results by the diffusion process have large
color differences even in training datasets. Directly training

the refinement module with ground truth brings color uncer-
tainty, resulting in unsatisfactory color adjustment as illus-
trated in Figure 5 and Figure 13. As demonstrated in Fig-
ure 11, the adapted ground truth, denoted by “Adapted GT”,
has a similar color appearance as diffusion results. Apply-
ing adapted ground truth as supervision targets makes the
refinement module focus on detail refinement and retains
the generation properties of diffusion models.

12. Human study

We conduct a human study on the real data (DSEC [8]) con-
taining over-/normal-/under-exposed images for perceptual
evaluation. We pick up 97 samples at equal intervals to
construct our human perceptual dataset1 to evaluate high-
illuminance, low-illuminance, and overall quality by a sur-

1Please refer to our Github:github.com/YixinYang-00/HDRev-Diff.

https://github.com/YixinYang-00/HDRev-Diff


LDR Ground Truth Adapted GT-2W/o Refinement-2 W/o Refinement-3W/o Refinement-1 Adapted GT-1 Adapted GT-3

Figure 14. Diversity results with different initial noise. The adapted ground truth has similar color properties as diffusion results, which
makes the refinement module focus on details refinement. Areas with obviously different colors are pointed out by red boxes.

vey link2. All methods are shuffled to avoid bias. Re-
ports from 40 participants on all the samples, as shown in
Table 7, the proposed method achievs highest preference
among those three aspects.

13. Efficiency comparison of existing methods
The efficiency comparison is shown in Table 6. Regression-
based methods [14, 25, 49, 54] have lower FLOPs, parame-
ters, and running time. With a similar diffusion model back-

2Survey link:https://www.wjx.cn/vm/QzCmzw2.aspx#

Table 7. Quantitative evaluation of human study, which is eval-
uated in three aspects: High-illuminance, Low-illuminance, and
Overall preference ratio.

High Low Overall

Liu et al. [25] 23.00% 17.60% 17.78%
NeurImg [14] 2.58% 1.80% 0.90%
HDRev [49] 2.77% 7.80% 2.96%
Sagiri [22] 5.03% 1.74% 1.10%

Ours 66.62% 71.06% 77.26%

www.wjx.cn/vm/QzCmzw2.aspx
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Figure 15. Qualitative evaluation of synthetic data on dataset collected by Yang et al. [49].



Figure 16. Qualitative comparisons of real data on DSEC [8].

bone, the proposed method has lower FLOPs (G) and faster
running time than Sagiri [22]. Only with a slight param-
eter increase, we achieve better performance compared to
Sagiri [22] as shown by Table 1.

14. More results on synthetic data
More quantitative comparisons are shown in Table 8. We
add five metrics laid in two categories to further support

our results. More qualitative comparisons are shown in Fig-
ure 15. EventHDR [54] only reconstructs HDR intensity.
Liu et al. [25] cannot reconstruct HDR scenes only with a
single LDR image as input. Besides, the details in dark re-
gions are wiped as indicated by the green box of the fourth
column in Figure 15. Sagiri [22] has difficulty maintaining
consistency with LDR images and predicting missing infor-
mation in over-/under-exposed areas. However, compared



Figure 17. Qualitative comparisons of real data on HES-HDR [14].

with Liu et al. [25], Sagiri [22] can predict the handrail with
diffusion priors as depicted in the second column of Fig-
ure 15. Although with events as input, NeurImg [14] and
HDRev [49] are challenged to leverage the HDR informa-
tion in events to reconstruct plausible results. Meanwhile,
HDRev [49], which fuses events and images in the fea-
ture domain, shows better results than NeurImg [14], which

fuses intensity images reconstructed from events with LDR
images in the image domain. The better performance in-
spires us to extract conditions in the feature domain, instead
of reconstructed HDR image at first. The proposed method
reconstructs colorful and plausible results consistent with
LDR images and events.



LDR images Events Ours HDRev [49]

EventHDR [54] Liu et al. [25] Sagiri [22] NeurImg [14]

Figure 18. Consecutive results of the proposed method on DSEC [8] dataset. The proposed method shows the natural results with fewer
artifacts and proper brightness. GIF animations could be displayed properly when viewed with Adobe Acrobat or KDE Okular.

Table 8. Additional quantitative evaluation of synthetic data.

Liu et al.[25] EventHDR [54] Sagiri [22] HDRev [49] NeurImg [14] Liang et al. [23] Dille et al. [4] Ours

Video
Metrics

t-LPIPS5↓ 0.025 0.112 0.107 0.024 0.021 0.086 0.012 0.018
HDR-VQM↓ 1.052 1.174 1.138 1.010 1.020 0.958 0.745 0.278

HDR
Metrics

HDR-VDP-3↑ 3.540 3.500 3.334 3.537 3.543 3.160 5.870 7.21
PU-PSNR↑ 24.643 23.432 23.49 23.71 24.73 21.96 32.39 32.20
PU-SSIM↑ 0.451 0.412 0.474 0.460 0.481 0.429 0.800 0.838

15. More results on real data
Comparison on DSEC dataset Additional results on
DSEC [8] dataset are shown in Figure 16. It is difficult
for EventHDR [54] to reconstruct distinguishable details on
real data. Liu et al. [25] and Sagiri [22] are challenged in
predicting over-exposed areas and retaining details in well-
exposed and dark areas. NeurImg [14] is able to predict
some of the information in over-exposed areas, while the
results are low quality and have obviously artifacts in dark
areas. HDRev [49] better preserves detail in well-exposed
areas than NeurImg [14], while it is difficult to leverage the
information in events to predict HDR images. The proposed
method leverages the advantage of events and diffusion pri-
ors, providing natural and high-quality HDR images.

Comparison on HES-HDR dataset Additional results
on the HES-HDR [14] dataset are shown in Figure 17.
EventHDR [54] is challenged to reconstruct HDR informa-

tion. Sagiri [22] and Liu et al. [25] can only hallucinate
HDR information, which is difficult for large over-exposed
areas, as shown in the third and sixth row in Figure 17.
HDRev [49] and NeurImg [14] are also hard to compensate
for over-exposed areas. The proposed method demonstrates
superior performance in both compensating missing infor-
mation for over-/under-exposed areas and preserving details
in well-exposed regions as depicted by Figure 17.

16. Failure case in consecutive frames
We provide two results in Figure 18 to show our limitation
on video generation. The proposed method does not con-
sider the consecutive connection between adjacent frames.
Although the proposed method maintains consistency with
input LDR images and events, it cannot restore consecutive
details for adjacent frames. Therefore, the over-exposed
areas obviously flicker as demonstrated by the sky of Fig-
ure 18.
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