SpikeDiff: Zero-shot High-Quality Video Reconstruction from
Chromatic Spike Camera and Sub-millisecond Spike Streams
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Figure 1. Spike cameras capture chromatic spikes with high temporal resolution, enabling the observation of scenes with rapid motion. As
illustrated in the orange region, the spike camera utilizes a color filter array to capture chromatic information and continuously accumulates
photons until reaching a threshold that triggers a spike. To reconstruct high-quality videos from these chromatic spikes, we propose
SpikeDiff, a zero-shot framework that leverages principled priors from pretrained diffusion models and integrates physics-based guidance
derived from the spike camera mechanism. SpikeDiff generates visually appealing videos without noise or motion blur, significantly
outperforming existing chromatic spike reconstruction methods (e.g., SJDD [11] and CSpkNet [12]).

Abstract

High-speed video reconstruction from neuromorphic spike
cameras offers a promising alternative to traditional frame-
based imaging, providing superior temporal resolution and
dynamic range with reduced power consumption. Neverthe-
less, reconstructing high-quality colored videos from spikes
captured in ultra-short time intervals (sub-millisecond) re-
main challenging due to the inherently noisy nature of spikes.
While some existing methods extend the temporal capture
window to improve reconstruction quality, they inevitably
compromise the temporal resolution advantages of spike
cameras. In this paper, we introduce SpikeDiff, the first zero-
shot framework that leverages pretrained diffusion models to
reconstruct high-quality colored videos from sub-millisecond
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(0.5ms) chromatic spike streams. By incorporating physics-
based guidance into the diffusion sampling process, SpikeD-
iff bridges the domain gap between chromatic spikes and
conventional images, enabling high-fidelity reconstruction
without requiring domain-specific training data. Extensive
experiments demonstrate that SpikeDiff achieves impressive
reconstruction quality while maintaining ultra-high temporal
resolution, outperforming existing methods across diverse
challenging scenarios in both perceptual quality and struc-
tural preservation.

1. Introduction

High-speed motions—from droplet impacts to mechanical
dynamics—occur at speeds surpassing human perceptual pro-
cessing capabilities. Conventional high-speed cameras are
capable of capturing these motions but encounter funda-



mental trade-offs [37, 45, 51]: higher temporal resolution
requires shorter exposures, leading to reduced light capture
and limited dynamic range, alongside increased power con-
sumption and larger data volumes. These constraints make
continuous high-speed capture over extended periods either
impractical or impossible.

Neuromorphic cameras have emerged as a compelling
alternative to conventional high-speed imaging, including
event cameras [9, 25, 27] and spike cameras [3, 21, 58].
Drawing inspiration from the fovea in biological visual sys-
tems, each pixel in a spike camera continuously accumu-
lates photons, generates spikes upon reaching the predefined
threshold, and subsequently proceeds to the next accumu-
lation period. Operating at a sampling rate of 20,000 Hz
with 1000 x 1000 resolution, spike cameras encode visual
information with low data overhead and power consumption,
compared to conventional cameras with similar sampling
rate and resolution. This enables continuously blur-free cap-
ture with high-speed motion and high contrast over several
minutes that conventional sensors struggle to handle.

For human perception, the binary representations of
spikes are inherently difficult to interpret and require re-
construction into video frames [54, 55, 58]. However, re-
constructing high-quality video frames from spikes remains
challenging, particularly within ultra-short time intervals
where limited spikes make existing methods highly suscepti-
ble to noise [57]. This challenge intensifies for color recon-
struction, as Color Filter Arrays (CFAs) further reduce the
number of available spikes within short time intervals.

Existing approaches attempt to mitigate these challenges
by extending the observed time intervals to accumulate more
spikes [31, 56, 57]. This strategy inadvertently introduces
motion blur and ghosting artifacts that compromise the tem-
poral resolution advantage of spike cameras. While recent
deep learning-based methods have shown promise in optimiz-
ing this trade-off problem, they typically exhibit limited gen-
eralization capabilities [10, 11], require extensive training
data [12], or demand longer time intervals [48]. Yet, these
methods still struggle to completely eliminate the noise [11]
(upper right in Figure 1) or avoid introducing motion blur in
high-speed motion regions [48] (lower right in Figure 1).

The recent success of diffusion models in image and video
restoration [15, 22, 43, 49] suggests a promising direction.
These methods have demonstrated remarkable capability
in encoding rich priors about natural scene statistics and
temporal dynamics. This raises an intriguing question: Can
we leverage these powerful priors to reconstruct high-quality
frames and videos from extremely noisy chromatic spikes
captured within sub-millisecond ' time intervals?

Integrating pretrained diffusion models with spike-to-

!Existing state-of-the-art methods [ 10—12] require at least a time interval
of 40/20,000 Hz = 2 ms for high-quality video reconstruction, while we
aim at ultra-short time interval of 10/20, 000 Hz = 0.5 ms.

video reconstruction presents fundamental challenges: Spike
cameras capture visual information through asynchronous
voltage accumulation and threshold-based sampling—a pro-
cess fundamentally different from the fixed-interval cap-
turing mechanism of frame-based cameras. Furthermore,
chromatic spikes represent raw sensor measurements with-
out established signal processing pipelines, while pretrained
diffusion models are typically trained on processed SRGB
frames with optimized color and tone characteristics. These
disparities create a significant domain gap that must be ad-
dressed for effective reconstruction.

In this paper, we propose SpikeDiff, the first zero-shot
spike-to-video reconstruction framework that leverages pre-
trained diffusion models as principled priors for high-quality
colored video reconstruction from chromatic spikes. By
establishing a physically grounded likelihood model of
spike measurements throughout the reverse diffusion pro-
cess, SpikeDiff approximates the posterior sampling of high-
quality videos from sub-millisecond spike streams. Unlike
existing approaches that require extensive domain-specific
training data and risk overfitting, our method operates in a
zero-shot manner, eliminating both the computational burden
of training and the need for large-scale datasets.

Our key contributions include:

* the first framework that leverages pretrained diffusion mod-
els as powerful priors for high-quality, zero-shot video re-
construction from chromatic spikes in ultra-short intervals,
eliminating the need for domain-specific training data; and

* aphysics-based and differentiable formulation of the spike
generation process, which enables effective integration
with pretrained diffusion models, bridging the domain gap
between spikes and conventional images.

Extensive experiments across diverse challenging scenarios

demonstrate that SpikeDiff consistently outperforms prior

methods that rely on extended time intervals and compromis-
ing temporal resolution, effectively breaking the traditional
quality-time resolution trade-off in spike-to-video recon-

struction (see our result shown in Figure 1).

2. Related work

Video reconstruction with monochromatic spikes. Recon-
structing high-speed videos from spikes typically employs
the imaging model of spike cameras [21]. By accumulating
the spikes triggered within a certain time window or estimat-
ing the interval between successive spikes, textures can be
reconstructed [57, 58]. However, due to the limited number
of photons arriving at the pixel in an ultra-short time, such
straightforward reconstruction suffers from significant noise.
To address this issue, Chang et al. [4] propose enhancing the
signal-to-noise ratio (SNR) by combining multi-bit spikes
with binary spikes in a rolling-mixed-bit manner. However,
this solution requires hardware modifications, limiting its
practicality in more general scenes. Zhao et al. [54] present



Spk2ImgNet, a hierarchical architecture that progressively
fuses the spikes, offering an alternative approach to improve
reconstruction quality. However, its generalization ability
is limited since it relies on synthetic data for training. To
address the issue of real-world ground truth for training,
self-supervised methods [5, 6] are developed to reduce de-
pendence on synthetic datasets. However, it is still challeng-
ing to reconstruct color videos from monochromatic spikes.
From the perspective of incorporating additional color guid-
ance, Chang et al. [3] develop a hybrid spike-RGB camera
system that performs spatial alignment and frame interpola-
tion simultaneously, enabling the recovery of 1000 FPS color
video. However, this hybrid camera system necessitates syn-
chronization and optical alignment, while the beam splitter
also poses challenges for constructing a compact device.
Demosaicking and denoising for unconventional cam-
eras. Various methods for joint demosaicking and denois-
ing have been proposed to obtain high-resolution and low-
noise color images from frame-based RAW data, ranging
from traditional model-based techniques [1, 8, 19, 23, 32—
34, 36, 50] to more recent data-driven approaches [18, 24,
29,41, 42, 46, 53]. However, all these methods cannot be
applied to binary data captured by the new-generation high-
speed cameras, such as event cameras [9, 25, 27], quanta
image sensors [16, 17], and spike cameras [21]. In the case
of event cameras, Xu et al. [47] and Lu et al. [30] present
Transformer-based architectures for demosaicking missing
pixel values in RAW domain processing. However, due to
the sparsity of events, these approaches still rely on frame-
based cameras for texture reconstruction. In the context of
quanta image sensors, Elgendy ef al. [14] integrate a fre-
quency selection method with a deep neural network based
filtering approach, leveraging the luma channels to assist
in the denoising of the chroma channels. Ma et al. [31]
design a blue-noise pseudo-random RGBW color filter ar-
ray and successfully reconstruct high-quality color images
from mosaicked single-bit frames, even in high-dynamic-
range (HDR) scenes with complex and rapid motion. For
spike cameras, Dong et al. [11] propose an offset-sharing
deformable convolution module to align temporal features
of color channels and develop a spike noise estimator to
characterize the noise distribution. However, this method
is trained on synthetic data, limiting its generalization to
real-world data. Yang et al. [48] introduce a self-supervised
denoising module trained exclusively on real-world chro-
matic spikes, achieving 2000 FPS color video reconstruction.
However, there remains significant research potential in bal-
ancing noise suppression with detail preservation.

3. Method

We present the degradation model of chromatic spikes based
on the physical formulation and propose SpikeDiff, a zero-
shot framework for reconstructing consecutive high-quality

frames from chromatic spikes. This approach leverages
pretrained diffusion models as principled priors to effectively
address the inherent ill-posedness of the problem.

3.1. Preliminaries

Chromatic spikes. The chromatic spike camera leverages
a spike sensor equipped with a Bayer-pattern (RGGB) CFA
to capture the scene with chromatic information. As shown
in Figure 1, when photons filtered by the CFA reach a pixel,
the electrons generated by these photons are continuously ac-
cumulated as long as the voltage does not reach the threshold
FEyy,. Simultaneously, the readout circuit samples the pixel
values at a frequency of 20, 000 Hz and a signal of 0 is read
out at each readout point. Once the accumulated voltage
reaches Eiy, a signal of 1 is read out and the voltage of this
pixel is reset to continue the next accumulation period. For
each pixel 7, we denote the accumulated voltage at a readout
point 7 as E(i, T), the triggered spike at 7 is:

if E(i,7) > Ew,
. (1)
otherwise.

Diffusion models. Latent diffusion models (LDMs) oper-
ate in a compressed latent space learned by an autoencoder
pair (£,D), where X = D(Z) and Z = £(X). An LDM
learns to reverse a diffusion process that gradually adds
Gaussian noise to a latent vector Zy. The reverse process,
modeled by a stochastic differential equation (SDE), gener-
ates a clean latent Z from pure noise Zr ~ N (0, I) [40]:

dZ = [-f(Z,t) — g°(t)V z, log pi(Zy)|dt + g(t)dw, (2)

where f(-,t) and g(t) are drift and diffusion coefficients,
w represents the standard Brownian motion. The key com-
ponent is the score function V gz, log p:(Z;), which is ap-
proximated by a time-conditioned neural network €4 (Z, t).
By iteratively applying the learned score, the reverse SDE
can sample from the learned data prior p(Zy) to generate a
high-quality image X, = D(Z).

3.2. Diffusion-based reconstruction from spikes

Reconstructing consecutive high-quality frames from real-
captured chromatic spike streams is challenging due to the
non-negligible noise perturbations, particularly within ex-
tremely limited time intervals (e.g., sub-millisecond). To
address this challenge, we leverage recent advancements in
diffusion models, which incorporate learned priors regarding
the distribution of high-quality images, and formulate the
reconstruction of video frames from chromatic spikes as a
Maximum a Posteriori (MAP) estimation problem:

X* =argmaxx p(X|Y)

3
=argmax x p(Y|X)p(X), ©)
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Figure 2. Pipeline of SpikeDiff. Our diffusion-based posterior sampling procedure follows the iterative denoising process of diffusion
models, starting from the initialization Z;_, and gradually approaching the desired latent Zy, indicated by the dashed lines. To maximize the
likelihood of the reconstructed video given the spike observations Y, we enhance each iteration with physics-based spike guidance, which
comprises three specially-designed differentiable degradation operators: mosaicking M, color casting C, and quantization Q. Finally, a
multiscale loss function bridges the gap between degraded frames A(X(.) and observed SFR frames Y. As shown in the top sequence, the
visual quality of generated frames progressively improves until convergence. Note that the internal degraded frames and the SFR frames are
all Bayer-patterned mosaic images; we present their corresponding demosaicked results for better visualization.

where the prior p(X) encodes knowledge of natural images,
and the likelihood p(Y'| X) represents the data fidelity to en-
sure the reconstruction is faithful to the observed chromatic
spikes Y.

The degradation model, mapping light intensity to spike
signals (illustrated in Figure 1), establishes the connection
from RGB frames X —the modality employed in pretrained
diffusion models—and chromatic spikes Y, and thereby de-
riving likelihood p(Y| X) illustrated in the next (Sec. 3.3).
This establishes a principled bridge that enables the recon-
struction of X from Y via posterior sampling in the MAP
framework, as illustrated in the green box in Figure 2, where
diffusion models serve as learned priors for X while the like-
lihood ensures fidelity to Y. This is exactly the key in our
method to connect the modality used in pretrained diffusion
models, RGB frames, and chromatic spikes.

Given the significant disparity between chromatic spike
streams and conventional images, the data fidelity term
p(Y|X) cannot be directly derived from time-continuous
chromatic spikes. Instead, we resort to a more compact repre-
sentation. According to the integrating and firing mechanism
of spikes, the light intensity is proportional to the spike firing
rate (SFR) [57]. Without considering noise, the SFR at 7/
can be counted through collecting a number of spikes within

a predefined time interval of size A7:

1 T'+AT/2
Y(i,T/) — E . Z S(Z,T) (4)
T=1'—AT/2

By collecting the SFRs from the pixel array at 7/, we ob-
tain mosaicked SFR frames Y € RT*HXW where T de-
notes the number of frames, and [, W represent the height
and width, respectively. The SFR frames, estimated from
real-captured chromatic spikes, are sensitive to the inherent
noise, especially within limited time intervals, and exhibit
misalignment with corresponding consecutive high-quality
frames. Consequently, we propose a corresponding degrada-
tion model, comprising differentiable operators, as detailed
in Sec. 3.3, to bridge the gap between X and Y and resolve
the likelihood estimation required for posterior sampling, as
illustrated in the orange box in Figure 2.

Posterior sampling. The primary challenge in reconstruct-
ing consecutive high-quality frames from sub-millisecond
chromatic spikes lies in its inherent ill-posedness, making
the prior term p(X) crucial. We leverage diffusion models
as powerful priors. Given the prior distribution of natural im-
ages p(Z;) encoded by the pretrained latent diffusion model
in Eq. (2) and likelihood defined in the next, we solve the
MAP problem in Eq. (3) by sampling from the posterior



distribution p(X|Y"). This is achieved by modifying the
reverse SDE of the diffusion model to incorporate guidance
from our observations. Using Bayes’ rule, the score of the
posterior distribution p;(Z;|Y") can be written as:

Vz,logpi(Zi|Y) = Vz,logp(Z:) + Vz,logp(Y|Zy),

)
where the prior term V z, log p(Z;) is given by the pre-
trained network €« (Z;,t). The likelihood term p(Y'| Z;)
guides the sampling towards latents Z; that are likely to
produce our observed SFR frame Y. The full reverse SDE
for posterior sampling is:

4Z = [~ J(Z.1) — §*(t)(V 7, log p(Z:)

6
+ Vz, logp(Y|Z,))]dt + g(t)dw. ©

To compute the likelihood score, we must relate the noisy
latent Z; at an intermediate timestep ¢ to the observation
Y . This involves approximating the conditional probability
p(Y'|Z;), which can be expressed as:

p(Y|Zt) :/p(Y|Z07Zt)p(Z0\Zt) dZy
@)
~ [ 0¥ 120)p(20|21) a2,

This integral is intractable. Instead, we approximate it by
first estimating the expected clean latent Z, = E[Z|Z;]
from Z;. For diffusion models like DDPM [20], the forward
process is

Zt:\/o_éitzo+\/lio_[tz7

where @; is the noise schedule parameter from the diffusion
model (e.g., DDPM [20]). Using Tweedie’s formula [7], we
can estimate the conditional mean:

Zo\t = E[ZO|Zt]
1 _ ©))
= ﬁ(zt + (1 —ay)Vg, logpi(Zy)).

Here, we replace the true score V gz, logp:(Z;) with its
neural network approximation eg«(Z;,t). With this esti-
mate of the clean latent, Zo\t, following the expression
p(Y|Zy) = Ezypzo)z,)P(Y|D(Zp))], we can use a
surrogate likelihood approach [7] to make the likelihood
tractable:

p(Y[Z) ~ p(Y|D(E[Zo| Z1])). (10)

This formulation provides a practical way to compute the
likelihood gradient.

3.3. Chromatic spikes’ likelihood estimation

Given a set of sequential SFR frames, denoted by Y, our ob-
jective is to establish a connection between the SFR frames

and the desired target reconstructions X, with both Y and
X normalized to the range [0, 1]. Hence, we resolve the
likelihood estimation of p(Y'|Z;) in Eq. (10) and thereby
complete the diffusion-based posterior sampling strategy.

Degradation model of chromatic spikes. The physical
process generating SFR frames Y can be modeled as a non-
linear inverse problem: Y = A(X) + IV, where A(-) de-
notes the known forward operator modeling the degradation
process, and IN represents stochastic noise. This problem
is inherently ill-posed due to irreversible information loss
during the imaging process and interference from noise in
the capture system.

The forward operator .A(+) in the imaging pipeline trans-
forms the latent high-quality frame X through a sequence
of operations: A(X) = Q(CM X)), where Q(-) represents
pixel-wise quantization, C' implements pixel-wise color cast-
ing with per-channel scaling, and M : RTXHxWx3 _,
RTXHXW denotes the mosaicking operator, modeling the
color filter array pattern. This decomposition explicitly mod-
els each step of the image formation process, providing a
foundation for our reconstruction approach.

Under the assumption of Gaussian noise, we model the
likelihood p(Y'|D(Z);)) of observing SFR frames Y~ given
the target frame X as a Gaussian distribution. Maximizing
this likelihood translates to minimizing the following loss:

1
L(Z) = Y = AD(Zop)) 3, (11)

where o represents the standard deviation of the noise IN,
and A represents the differentiable degradation operators
defined later. By substituting the score function into Eq. (5),
we obtain:

Vz, logp(Z|Y) = €g«(Z,t) — sV z,L(Z:), (12)

where s controls the strength of measurement guidance.

Differentiable degradation operators. A key innovation
in SpikeDiff is our design of differentiable operators in .4
that model the physical characteristics of chromatic spike
cameras, which include color casting C', quantization Q, and
mosaicking M. Based on the gray-world prior [2] for the
target frame, which indicates that each color channel should
have a mean value close to one another, we estimate the
color casting coefficients ap, ag, ap as a, = ﬁ, where
¢ € {R,G,B} denotes the color channel, (Y,) is the mean
value of color channel ¢ among Y across the temporal axis.
Then the channel-wise scaling factors for the color casting
operator C can be computed as 77/, where parameter 7 is
used to adjust the value range.

SFR frames are inherently quantized and discrete as they

are accumulation of binary spike frames, which differ from



8-bit frames X. To simulate the quantization effect and
maintain the backward differentiability, we design a soft
quantization operator Q. Given the expected quantization
levels determined by SFR estimation, the soft quantization
function ¢(-) operates on each pixel individually:

q(z) = U(z) - (1 = p(x)) + ulz) - o(2), (13)

M) tu@y 4 e, (4

o(x) = [tanh(k(x — 5

where [(x) and u(z) denote the lower and upper quantization
levels of x, ¢(+) quantizes the input value to the range [0, 1]
with a smooth curve, and hyperparameter k£ controls the
smoothness, as shown in Figure 3(a).

The naive Bayer-pattern mosaicking operator M con-
verts target frame from dimension 7'x H x W x 3 to
T x & x W x 4, resulting in a partially defined backpropa-
gation function due to its gradient discontinuity. To simulate
the Bayer-pattern CFA while maintaining a dense gradient
flow, we extend the operator’s derivative with linear interpo-
lation convolution, similar to demosaicking algorithms.

By composing these operators, we conclude a differen-
tiable simulation from consecutive frames to SFR frames,
enabling optimization in the posterior sampling process.

Multiscale enhancement. To preserve fine spatial details,
we incorporate a Laplacian pyramid P(X) that guides the
diffusion process across multiple scales. The Laplacian pyra-
mid decomposes the generated consecutive frames into a
multiscale representation of frequency components, facilitat-
ing the preservation of fine details critical for high-quality
output. The Laplacian pyramid is calculated by subtracting
the upsampled version of the downsampled frames from the
original frames:

P(X) = {X; - UD(X)}/, , X = UD(X;1))
15)
where D and U are the upsampling operator and downsam-
pling operator, respectively, and L is the number of pyramid
levels. This multiscale decomposition effectively guides the
diffusion process across different frequency bands, ensuring
preservation of high-frequency details in reconstruction.

4. Experiments

4.1. Implementation details

Quantization levels. As introduced in Section 3.2, SFR
frames are accumulations over predefined time intervals
Ar7. Given that the spikes are binary, the value range of
SFR frames is restricted to {2=|u € NN [0,Ar]}. For
instance, we set A7 = 10 in our experiments to achieve
sub-millisecond reconstruction, and the corresponding quan-
tization levels are 0,0.1,0.2,...,0.9,1, leading to the soft
quantization function visualized in Figure 3(a).

q(x)

\
i
:
i
i
i
x4

;

(a) Visualization of q(x) !

(b) Quantization effectiveness

Figure 3. Visualization of the quantization operator. (a) The soft
quantization function g(z) for SFR frames with A7 = 10. (b)
Detailed demonstration of quantization effectiveness on continuous
pixel values.

Color casting estimation. To obtain better color casting
coefficients and maintain consistency across video frames re-
construction, we average the estimations of o, from all SFR
frames in the sequence, and apply the same « throughout
the video reconstruction.

Pretrained diffusion model. We implement SpikeDiff upon
the pretrained weights from [28], which is adapted from
Stable Diffusion v2.1 [38], selected for their strong priors
and close alignment with our task. We extend the image-to-
image pipeline to spikes-to-video by dividing SFR frames
into small chunks, and achieve temporal consistency by
leveraging high-fidelity reconstruction from time-continuous
chromatic spikes with physics-based guidance.

4.2. Evaluation dataset

As our proposed method leverages pretrained diffusion mod-
els, which contain principled priors of the real world images
and videos, we qualitatively evaluate the performance of
our method on a real-world dataset. To this end, we collect
a series of real chromatic spikes within the spike camera.
The spike camera is equipped with a Bayer-pattern color
filter array and a 1000 x 1000 pixel spike sensor. Lim-
ited by the generation ability of pretrained diffusion models
and resolution of compared methods [48], we spatially crop
the chromatic spikes into a lower resolution of 512 x 512,
maintaining the same Bayer-pattern (RGGB). The collected
dataset contains chromatic spikes from various scenes with
different levels of motion and color variation. We would
like to contribute this dataset to the community for further
research.

Despite the real-captured chromatic spikes, we also
employ the chromatic spikes simulator described in CSp-
kNet [12] and SY24 [48] to generate synthetic chromatic
spikes from real-world high-frame-rate videos. We collect
over 100 dynamic scenarios from X4K1000FPS [39] dataset,
and generate the corresponding chromatic spikes with the
simulator. The synthetic dataset is used to conduct the quan-
titative evaluation of our proposed method, which further
demonstrates the superiority of SpikeDiff.

4.3. Qualitative evaluation

To demonstrate the superiority of our proposed method, we
conduct the qualitative evaluation on chromatic spikes cap-
tured from the real world, comparing SpikeDiff with exist-



TFI TFP 3DRI

ing chromatic spike reconstruction methods. Our proposed
method can recover high-quality color frames from sub-
millisecond time intervals (10 spike frames, corresponding
to 0.5 ms), which none of the existing neural network based
method achieve. We adapt and evaluate the existing chro-
matic spike reconstruction methods (3DRI [10], SJDD [11],
CSpkNet [12], and SY24 [48]), combining the SFR estima-
tion methods (TFI [57], TFP [57]) with demosaicking as
baselines. We conduct all experiments on sub-millisecond
time intervals (0.5ms) to maintain the fairness in comparison.
As shown in Figure 4(a), where a fan is fast rotating in front
of the checkerboard, SpikeDiff produces the most clean and
visually pleasant results. In contrast, other methods, except
CSpkNet and SY24, contain significantly noisy pixels as
highlighted in the red and blue bounding boxes. The results

SJDD CSpkNet SY24
Figure 4. Qualitative comparison on real-world captured chromatic spikes (a-c), and synthetic chromatic spikes simulated from real-world
high-frame-rate videos (d). Compared methods include TFI [57], TFP [57], 3DRI [10], SJIDD [11], CSpkNet [12], and SY24 [48]. Details in
red / blue bounding boxes are shown on the top. All results are reconstructed from sub-millisecond spike streams (0.5ms), where most
methods suffer from severe noise or extreme degradation while SpikeDiff recovers clean and visually pleasing results.

SpikeDiff

of CSpkNet and SY24 contain blurry or degraded artifacts.
As the time intervals are strictly limited, all methods are
free of motion blur naturally. As for Figure 4(b), we capture
a static scene in front of the lamp with the spike camera
slightly shaking, to study the reconstruction quality under
hard light. Compared to others, SpikeDiff generates the
most clear and sharp details in blue bounding box. And
SpikeDiff produces a smoother texture under the direct il-
lumination in the red bounding box, while most of other
methods show obvious quantized artifacts. In Figure 4(c),
we leverage the spike streams captured by Yang et al. [48],
where SpikeDiff outperforms all other methods in both noise
suppression and visual quality. We also illustrate a synthetic
scene in Figure 4(d), which further demonstrates the superior
reconstruction capability of SpikeDiff on chromatic spikes



Table 1. Quantitative comparison of the proposed method with
existing chromatic spike reconstruction methods. The best and
second-best results are highlighted in red and blue, respectively.

Method ‘ PSNRtT SSIMt FID| NIQE| IL-NIQE|
SpikeDiff (Ours) | 18.694 0.750 2.880 5.173 38.535
SY24 [48]| 13.013 0.536 21.472 11.592 78.672
SJIDD [11]| 11.358 0.325 26.009 11.278 44.711
3DRI[10]| 18.512 0.390 16.036 8.541 41.816
CSpkNet [12] | 13.364 0.641 4.699 5.819 39.948
TFP [57]| 12.909 0.559 3.256 12.001 64.554
TFI[57] | 14.640 0.552 7.558 12.518 55.758

Table 2. Temporal consistency evaluation, reporting Frame CLIP
Score (Frame C.S.), Interpolation Error (Inp. Err.), and Interpola-
tion PSNR (Inp. PSNR) following the metrics from [26]. The best
and second-best are highlighted in red and blue, respectively.

Method | Frame C.S.+ Inp. Err.| Inp. PSNR?
SpikeDiff (Ours) 0.969 0.057 25.45
SY24 [48] 0.963 0.041 28.65
SIDD [11] 0.962 0.113 19.34
3DRI [10] 0.965 0.104 19.87
CSpkNet [12] 0.966 0.059 25.27

Grad. w/
Mosaicking

Result w/
Color casting

Result w/o
Color casting

Grad. w/o
Mosaicking

Figure 5. Analysis of differentiable degradation operators. Gener-
ated frames receive sparse gradient from chromatic spikes without
mosaicking operator. Similarly, reconstructions exhibit incorrect
color distribution without the color casting operator.

simulated from real-world videos. Note that post-processing
(e.g., color casting) cannot eliminate noise or artifacts from
other methods’ results. Please refer to our supplementary
material for more comparison and detailed discussion.

4.4. Quantitative evaluation

As shown in Table 1, we quantitatively evaluate the per-
formance of SpikeDiff and existing chromatic spike recon-
struction methods on the synthetic dataset. Similar to our
qualitative evaluation, we evaluate these methods on sub-
millisecond time intervals (0.5ms). Our method achieves
the best performance across all the metrics, including PSNR,
SSIM [44], FID [13], NIQE [35], and IL-NIQE [52], which
demonstrates the superiority of SpikeDiff, especially in terms
of perceptual metrics that reflect visual quality. As shown in
Table 2, we also evaluate the temporal consistency metrics
of SpikeDiff and existing reconstruction methods, where
SpikeDiff achieves the best or comparable performance.

4.5. Ablation study

To investigate the effectiveness of our proposed degradation
operators, we visualize the internal results after applying

Table 3. Quantitative ablation study on the contribution of different
degradation operators to reconstruction quality.

Method |PSNRT SSIMt FID| NIQE, IL-NIQE|

SpikeDiff | 18.694 0.750 2.880 5.173 38.535
wioC | 16.752 0.729 12.064 6.072 44.661
w/o M | 17.481 0.723 4392 6.203 41.356
w/o Q| 17.460 0.717 3.938 6.318 40.487

each operator. The mosaicking operator M converts the
generated frames into Bayer-pattern images, which is the
beginning step. As shown in Figure 5, without the specific
backward formulation for M, the gradient map is not well-
defined. The color casting operator C' is responsible for
color correction, which degrades the normal colored image
to a greener one (which is more close to the SFR frames) as
shown in Figure 5. For the soft quantization operator O, its
effectiveness is demonstrated in Figure 3(b), quantizing the
continuous white pixels into discrete levels, similar to the
pattern of the SFR frames. As shown in Table 3, we further
demonstrate the effectiveness of each degradation operator
via quantitative evaluation.

5. Conclusion

We propose the first zero-shot chromatic spike reconstruction
method, named SpikeDiff, to recover consecutive clean and
high-quality colored frames from sub-millisecond spikes.
SpikeDiff leverages the deep priors from pretrained diffusion
models to address the extreme noise under very limited time
intervals and generate visually pleasant results. SpikeDiff
integrates the physics-based chromatic spikes’ likelihood
into the diffusion-based posterior sampling process, which
bridges the domain gap between spikes and conventional
images. We conduct experiments on both synthetic and real-
captured data to demonstrate the superior performance of
SpikeDiff over existing reconstruction methods.

Limitations and future work. As shown in Figure 4(b),
there exist “overexposure” cases in the central region under
extreme direct illumination. This imperfection is due to
the predefined spike firing threshold, resulting in consistent
spikes among these pixels. We observed that it is hard to
generate ideal details without any explicit guidance. In future
research, we plan to explore more degradation model designs
and diffusion techniques to handle this issue and further
extend the HDR capability of chromatic spike reconstruction.
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6. Working mechanism of spike camera

As introduced in Sec. 3.1, the spike camera captures the
scene in a continuous accumulation and trigger mechanism.
We also describe this working mechanism with a finite state
automaton (FSA), as shown in Figure 6. Each pixel in the
spike camera asynchronously accumulates the incoming pho-
tons and readout the triggered spikes at a high sampling rate
(e.g., 20,000 Hz). Spike pixel starts with an initial voltage
FE = 0, and accumulates the incoming photons A7 during
the last period (e.g., 1/20000 s) with a conversion ratio «. If
the accumulated voltage E¥ + o AT exceeds the pre-defined
threshold E,;, the pixel will trigger a spike (readout 1) and
reset the voltage. Otherwise, the pixel will not trigger a spike
(readout 0) and keep the accumulated voltage.

7. Additional implementation details

The results of the compared methods, except for CSp-
kNet [3], are produced using the codes and checkpoints
provided by their authors. For CSpkNet [3], since only the
code is obtained, we retrained following the original paper
with synthetic dataset. We used the same spike model as
these methods in simulation to ensure fairness. Note that TFI
and TFP are not learning-based methods. Instead of starting
from the completely random initialization Z, we utilize an
intermediate latent state to accelerate the diffusion process,
which is widely used in diffusion pipelines:

Z{;S = \/O_ZE(Y)‘F 1*0_41552, ZNN(O,I) (19)
The hyperparameter k controls the smoothness of soft quanti-
zation (higher & approaches harder quantization). We empir-
ically select k& = 50 in experiments for best reconstruction
quality, as shown in Tab. 4.

* Corresponding authors.

/—\ shutdown signal O
q a5

E=0
start q0

Figure 6. Spike camera working mechanism described using finite
state automaton, where F denotes the accumulated voltage, Fyy,
denotes the voltage threshold, o denotes the conversion ratio, and
AT denotes the incoming photons during last accumulation period.

To collect the real-captured chromatic spike dataset for
qualitative evaluation, we use Spike M1K40-H2-Gen3 (chro-
matic version) from SpikeSee', which captured Bayer-
pattern spike streams at 20, 000 Hz, with a spatial resolution
of 1000 x 1000, as shown in Figure 7.

8. Additional experiments results

8.1. Additional qualitative results

Real-captured chromatic spikes. We conduct additional
experiments on real-world captured chromatic spikes to ana-
lyze the performance of our proposed method qualitatively.
As shown in Figure 8(a), we spin the umbrella with rainbow
colors in front of the light source. Our proposed SpikeDiff

lhttps ://www.spikesee.com/product.html
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Figure 7. Spike M1K40-H2-Gen3 (chromatic version) camera. We
use this camera to capture spike streams for evaluation on real data.

recovers the accurate rainbow colors with clean and sharp
textures, leading to apparently better visual quality than
other methods. As for Figure 8(b), we capture the rotating
fan before the color checkerboard. As the time interval of
chromatic spikes is limited to 0.5 ms, all methods are free
of motion blur. But most method suffer from noise pertur-
bation or over-smoothing. In contrast, SpikeDiff recovers
clean and high-quality frames. In Figure 8(c-d), we focus on
another rotating fan with color tapes. SpikeDiff successfully
recover the color, suppress the noise, and preserve the sharp
edges in highlighted areas. In conclusion, the additional
qualitative evaluation demonstrates the superiority of our
proposed method over existing chromatic spike reconstruc-
tion methods, especially in terms of chromatic spikes from
sub-millisecond time intervals.

Simulated chromatic spikes. As described in Sec. 4, we
generate a synthetic chromatic spikes dataset from high-
frame-rate videos to evaluate the performance of our pro-
posed method quantitatively. We further visualize the re-
construction results of SpikeDiff and existing methods on
the synthetic dataset in Figure 9, together with the ground
truth frames. The results show that our proposed method can
recover video frames with the best visual quality, demon-
strating the effectiveness of our proposed method.

8.2. Analysis of the degradation operators

Visualization of degradation process. We provide de-
tailed visualization of the degradation process in the calcula-
tion of chromatic spikes’ likelihood. As shown in Figure 13,
our proposed degradation operators, including mosaicking
M, color casting C, and quantization O, gradually trans-
form the sampled video frame X, to the same distribution
as SFR frames Y . Firstly, the mosaicking operator degrades
the colored image to a Bayer-patterned mosaic image, whose
debayering result is illustrated for better visualization, pro-
ducing similar color bleeding as the SFR estimations in the
blur bounding boxes. Consequently, the color casting opera-
tor transforms the mosaic image to the color distribution of
SFR frames. Finally, a soft quantization operator is applied

Table 4. Analysis of the hyperparameter k in soft quantization.

k |PSNRT SSIMt FID| NIQE| IL-NIQE|

10| 17.088 0.589 5.115 6.787 45.029
50| 18.694 0.750 2.880 5.173 38.535
200 | 17.889 0.542 4.127 6.795 49.158

Table 5. Quantitative evaluation of our proposed method SpikeDiff,
with and without multiscale enhancement.

Method | PSNRT SSIMt FID| NIQE, IL-NIQE/|
w/ Multiscale | 18.694 0.750 2.880 5.173  38.535
wio Multiscale | 17.549  0.570 3.706 6.809  48.350

to each pixel and conducts a quantization pattern similar to
the SFR frames, as indicated by the red bounding boxes.

Handling of color casting. To further demonstrate the
superiority of our proposed method over existing chromatic
spike reconstruction methods, which do not consider color
casting in their models, we adapt these methods to convert
their final outputs to the desired color distribution with gray
world assumption (the same as ours). As shown in Figure 10,
introducing color casting to existing methods can slightly
improve their visual quality, but the noise and artifacts in the
results cannot be eliminated. And our simulated dataset is
free of color casting effects, thereby eliminate the potential
influence of color casting in quantitative evaluations.

8.3. Analysis of time intervals

SpikeDiff is the first zero-shot method that can recover high-
quality video frames from noisy real-captured chromatic
spikes, even with extremely limited time intervals, e.g., sub-
millisecond. All the existing deep learning-based methods
require much more spikes (e.g., > 2ms) to leverage richer
information and suppress the noise with motion estimation.
However, most of these methods suffer from the inaccurate
estimation of optical flow and imperfect noise modeling,
producing unsatisfactory results even with longer time in-
tervals. As shown in Tab. 6, our proposed SpikeDiff also
outperforms existing methods with longer time intervals as
their declarations among most of the metrics.

8.4. Analysis of multiscale enhancement

We conduct quantitative analysis on the effectiveness of mul-
tiscale enhancement in our proposed method. As shown
in Table 5, the multiscale enhancement improves the per-
formance of SpikeDiff, with only negligible 0.5G FLOPs
increase.

8.5. Comparison to diffusion-based methods

We compare our proposed method with other diffusion-based
methods [4, 7], by applying the pretrained image / video
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Figure 8. Additional qualitative comparison between our proposed SpikeDiff and existing reconstruction methods on real-captured chromatic
spikes. All results are recovered from sub-millisecond chromatic spikes (0.5ms). Details in red / blue bounding boxes are shown on the top.

Table 6. Quantitative comparison of the proposed SpikeDiff (with
0.5ms time intervals) with existing chromatic spike reconstruction
methods (with > 2.0ms time intervals, satisfying the original dec-
laration of each method). The best and second-best results are
highlighted in red and blue, respectively.

Method | PSNRT SSIMT  FID| NIQE| IL-NIQE|
SpikeDiff (0.5ms) | 18.694 0.750 2.880 5.173  38.535
SY24 6] (3.0ms) | 14.163  0.629 20239 10.199  80.243
SIDD [2] (2.0ms) | 11.250 0505 7.843 7.855  41.079
3DRI[1](2.0ms) | 21.618 0.625 5991 8345 41816

CSpkNet [3] (2.0ms) | 14393 0.744 3473 5982  40.066

TFP [8] (2.0ms) | 13429 0449 14986 13.089  60.693

TFI[8] (2.0ms) | 16.924 0700 3.449 11.556  49.377

restoration diffusion pipelines to the SFR frames Y. As
shown in Figure 12, the naive application of these diffu-

sion models leads to unsatisfactory results, where the recon-
structed images suffer from severe artifacts, e.g., producing
generated textures or suffering from quantization effects. In
contrast, our proposed method effectively suppresses the gen-
erative artifacts, recovers the color information, and achieves
a more visually pleasing result. This comparison demon-
strates the effectiveness of video diffusion-based posterior
estimation, which combines the existing diffusion pipeline
with the external physics-based guidance from the spikes.
Note that we integrate color casting as pre-processing for
these methods to eliminate its potential influence. Compared
to these methods, SpikeDiff leverages additional physics-
based guidance from chromatic spikes via differentiable
operators, avoiding the instability of applying techniques
like token merging to spikes, particularly regarding optical
flow dependencies. Instead, SpikeDiff achieves temporal
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Figure 9. Visualization of the chromatic spike reconstruction results on synthetic dataset. The chromatic spikes are simulated from real-world
high-frame-rate videos. All the results are reconstructed from sub-millisecond chromatic spikes (0.5ms). SpikeDiff achieves the best visual
quality and texture preserving among all the methods. Details in red / blue bounding boxes are shown on the top.

consistency by leveraging high-fidelity reconstruction from
time-continuous chromatic spikes.

9. Further discussion

9.1. Alternative SFR estimation

As we introduced in Sec. 3, our proposed method SpikeD-
iff starts from the spike firing rate (SFR) estimations Y,
which is perturbed by spike noise, integrate SFR frames
into the diffusion-based posterior sampling process via chro-
matic spikes’ likelihood estimation, and finally recover high-
quality video frames from these SFR frames. Despite the
SFR estimation method we used in Eq. 4 (TFP [8]), there is
another method (TFI [8]) which calculates the firing interval
between two adjacent spikes and then takes its reciprocal as

the estimation of firing rate:

YI(Z.? T) = 1/(Tnext - Tlast)a (20)
Toext = min{7’ > 7|S(i,7") = 1}, 21
Tast = max{7’ < 7|S(i,7") = 1}. (22)

However, as shown in Fig. 4, the noise contamination of
TFI does not follow the same pattern as TFP, which cannot
be assumed as a Gaussian distribution. In experiments, we
demonstrate that directly replacing Y with Y in SpikeD-
iff leads to significant artifacts in generated video frames,
highly related to the noisy pixels in the SFR frames, which
is consistent with our hypothesis, as shown in Figure 14.
Therefore, our proposed method is not compatible with TFI
estimations. We believe it requires additional noise model-
ing and optimization designs to integrate TFI into diffusion-
based posterior sampling, due to its out-of-distribution noise
characteristics.
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Figure 10. Qualitatively comparison between our proposed SpikeDiff and other chromatic spike reconstruction methods, with color casting
based on gray world assumption as post-processing for other methods. Compared to Fig. 4 and Figure 8, the correction of color distribution
slightly improves the visual quality of other reconstruction methods, but cannot eliminate any noise or artifacts.
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Figure 11. Qualitatively comparison between our proposed SpikeDiff (with 0.5ms time intervals) and other chromatic spike reconstruction
methods (with > 2.0ms time intervals, satisfying the original declaration of each method). With longer time intervals, existing methods
either suffer from motion blur or residuary noisy pixels. Our proposed SpikeDiff recovers the most clean and visually pleasant reconstruction

results even with sub-millisecond spikes.

DiffBIR DiffIR2VR-Zero
Figure 12. Comparison to image/video restoration diffusion models,
i.e., DiffBIR [4], DifflR2VR-Zero [7]. Although color casting
can be integrated as pre-processing, directly application of these
diffusion-based image/video restoration methods still suffers from
quantization and serious generation artifacts, while SpikeDiff can
produce high-quality results faithful to the chromatic spikes.

SpikeDiff

Xojt MX, CMX) Q(CMXqt) Y
Figure 13. Detailed visualization of the degradation process. The
blue bounding boxes show the effects of our mosaicking operator,
and the red bounding boxes demonstrates the effectiveness of our
soft quantization operator.
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Figure 14. TFI-based SFR estimation and the corresponding re-
sult from adapted SpikeDiff pipeline. The white noisy points in
recovered frames are caused by the out-of-distribution noise from
TFI-based SFR estimation.

9.2. Further reduced time-intervals

Our proposed method SpikeDiff already achieves high-
quality reconstruction from sub-millisecond chromatic
spikes, and outperforms existing methods with much longer
spike streams as input (e.g., 2.0 to 3.0 ms), as demonstrated
in Figure 8 and Table 6. Beyond of this, we also conduct
experiments on further reduced time intervals, e.g., 0.1 ms,
equivalent to only 2 spike frames. However, due to the miss-
ing of texture information and perturbation of noisy spikes in
extremely limited time intervals, even our proposed method
still cannot recover clean frames from such input.

9.3. Inference speed analysis

Integrating pretrained diffusion models into chromatic spike
reconstruction problem provides principled priors to elim-
inate the potential spike noise, but it also requires a large
amount of computation resources. In our experiments, we



Table 7. Offline inference speed of SpikeDiff and other methods to
recover a video frame from chromatic spikes, benchmarked with
Intel 19-12900K and NVIDIA RTX3090, averaged over 50 runs.

Method ‘YSZ4 3DRI SJDD CSpkNet SpikeDiff Baseline

Runtime (s)‘ 007 125 322 0.51 20 12.5

Table 8. FLOPs of SpikeDiff and other methods to recover a single
frame from chromatic spikes.

Method | YS24 3DRI SIDD CSpkNet SpikeDiff
TFLOPs | 0.65 1238 3030  4.53 182.72

compare the inference speed and floating point operations of
SpikeDiff with other chromatic spike reconstruction meth-
ods, as shown in Table 7 and Table 8. The inference speed
of our proposed method is slower, but we believe it is ac-
ceptable for offline processing tasks, and SpikeDiff achieves
zero-shot reconstruction with a dominant performance in
terms of extremely short time interval. Additionally, SpikeD-
iff can leverage accelerating techniques from diffusion mod-
els, e.g. DeepCache [5], which can mitigate this problem but
is beyond our scope. And diffusion techniques such as mask-
shift sampling can also be integrated to SpikeDiff, which
can improve the spatial resolution.
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