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Figure 1. AdaptiveAE takes camera preview images as input and automatically predicts the ISO and shutter speed for each LDR captures
for exposure fusion through a 3-stage sequential refinement procedure to achieve an optimal balance between noise level and motion-related
problems for high quality HDR capturing in dynamic scenes with deep reinforcement learning. AdaptiveAE achieves PSNR 39.7 on HDRV
dataset [26], while baseline methods [6, 21, 32] that either only predicts shutter speed or do not consider motion can only achieve PSNR
below 37.6 and has evident motion blur and ghosting artifacts in HDR results.

Abstract

Mainstream high dynamic range imaging techniques typ-
ically rely on fusing multiple images captured with differ-
ent exposure setups (shutter speed and ISO). A good bal-
ance between shutter speed and ISO is crucial for achiev-
ing high-quality HDR, as high ISO values introduce signifi-
cant noise, while long shutter speeds can lead to noticeable
motion blur. However, existing methods often overlook the
complex interaction between shutter speed and ISO and fail
to account for motion blur effects in dynamic scenes.

In this work, we propose AdaptiveAE, a reinforcement
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learning-based method that optimizes the selection of shut-
ter speed and ISO combinations to maximize HDR recon-
struction quality in dynamic environments. AdaptiveAE in-
tegrates an image synthesis pipeline that incorporates mo-
tion blur and noise simulation into our training procedure,
leveraging semantic information and exposure histograms.
It can adaptively select optimal ISO and shutter speed se-
quences based on a user-defined exposure time budget, and
find a better exposure schedule than traditional solutions.
Experimental results across multiple datasets demonstrate
that it achieves the state-of-the-art performance.

1. Introduction
High-dynamic-range (HDR) imaging plays a pivotal role
in computational photography. To capture an HDR scene,



due to hardware limits, a single capture can only cover a
Low Dynamic Range (LDR), and HDR fusion techniques
are proposed to combine multiple LDR images with vary-
ing exposures to cover a wide dynamic range [7, 10, 14, 15,
17, 19, 23, 35, 36, 40]. The typical way to vary exposure is
to change either shutter speed or ISO. This is a challenging
process, as a longer shutter speed may increase the signal-
to-noise ratio but introduce unpleasant motion blur, a large
ISO may increase brightness but also magnify noise, and
significant exposure differences can cover a wider dynamic
range but also increase the risk of misalignment. Therefore,
the choice of exposure values (EVs) for each capture is crit-
ical in this process to ensure high-quality HDR results.

Still, very limited work discusses how to choose the op-
timal exposure levels, particularly in dynamic scenes. Prior
works on exposure scheduling mainly focus on static scenes
and ignores potential motion blur. Learning-based tech-
niques overlook the intricate interplay between ISO and
shutter speed, resulting in suboptimal image quality under
varying conditions [6, 21, 32]. Additionally, many existing
methods treat ghosting and motion blur as separate, compu-
tationally intensive post-processing tasks, which is unsuit-
able for real-time applications [11, 25, 27, 29, 31, 38, 39].

In this work, we propose AdaptiveAE, an efficient expo-
sure control algorithm designed for HDR capturing, which
addresses both motion blur and noise during image acquisi-
tion. Given the previously captured image, our method op-
timizes the exposure bracketing strategy for the subsequent
capture, based on illumination information and semantic
data from previous frames. Unlike previous approaches that
treat motion blur as a separate post-processing task, we aim
to address it during the capture process.

Designing both efficient and adaptive exposure control is
non-trivial, and we resort to reinforcement learning [18] to
solve this challenge. Our solution mimics an experienced
photographer. At each iteration, the policy network takes
the previously captured LDR images as input, together with
extracted semantic and illumination information. Given this
information, the policy network learns to determine the op-
timal exposure setup for the following captures, which max-
imizes the additional information provided by this frame
while also reducing the risk of misalignment and motion
blur in a dynamic scene. Once the next frame is captured,
this newly captured image will be used as input for the sub-
sequent refinement iteration. As shown in Fig. 1 right, the
final quality (PSNR) of fusion increases as more images are
captured.

Our proposed approach offers several advantages over
traditional exposure controls. First, AdaptiveAE controls
both exposure time and ISO and also adapts to different
scenes. As a result, it has a much higher upper bound com-
pared to either a fixed exposure schedule or an adaptive con-
trol algorithm that only changes exposure time. As shown

in Fig. 1, our method iteratively achieves an optimal bal-
ance between noise and blur, resulting in less noise, reduced
motion blur, and superior image quality compared to other
baseline methods. Second, our method can handle both
static and dynamic scenes. In static scenes, it achieves per-
formance comparable to state-of-the-art techniques, and in
dynamic ones, it produces visually compelling HDR images
with minimal motion blur and ghosting artifacts. Third, our
method can automatically choose the best number of frames
for HDR imaging. Unlike traditional HDR approaches that
often use a fixed number of frames, such as three, our ap-
proach provides flexibility to determine whether capturing
three or more frames is optimal for certain scenes, balanc-
ing image quality and time budget.

Current datasets [3, 8, 9, 13, 26] are inadequate for study-
ing auto-exposure (AE) with simultaneous noise and mo-
tion blur considerations. To bridge this gap, we introduce
a blur-aware data synthesis pipeline. This novel approach
enables the concurrent analysis of blur and noise in AE pre-
diction, thereby enhancing HDR image quality. Our method
uniquely integrates these factors, departing from traditional
practices that address them separately.

We evaluate AdaptiveAE on established benchmarks, in-
cluding the DeepHDR Video dataset [3] and the HDRV
dataset [26], employing various downstream exposure fu-
sion techniques. Our results demonstrate state-of-the-art
performance compared to existing auto-exposure methods.
Additionally, comprehensive ablation studies and targeted
experiments focusing on motion blur confirm the efficacy
of our approach and underscore the critical importance of
incorporating blur synthesis into our pipeline. Our method,
tested on real-world scenes using a SONY Alpha 7C-II,
demonstrates superior noise control and effectively reduces
motion blur, outperforming baselines in the visual quality
of the fused HDR images.

Current datasets [3, 8, 9, 13, 26] are inadequate for study-
ing auto-exposure (AE) with simultaneous noise and motion
blur considerations. To bridge this gap, we introduce a blur-
aware data synthesis pipeline. This novel approach allows
for concurrent analysis of blur and noise in AE prediction,
enhancing HDR image quality. Our method uniquely inte-
grates these factors, departing from traditional practices that
address them separately.

We evaluate AdaptiveAE on established benchmarks, in-
cluding the DeepHDR Video dataset [3] and the HDRV
dataset [26], employing various downstream exposure fu-
sion techniques. Our results demonstrate state-of-the-art
performance compared to existing auto-exposure methods.
Also, comprehensive ablation studies and targeted experi-
ments focusing on motion blur confirm the efficacy of our
approach and highlight the critical importance of incor-
porating blur synthesis within our pipeline. Our method,
tested on real-world scenes using a SONY Alpha 7C-II,



demonstrates superior noise control and effectively reduces
motion blur, outperforming compared baselines in the vi-
sual quality of the fused HDR images.

2. Related work
Strategy for exposure bracketing. Determining the opti-
mal set of exposures for multiple-exposure dynamic range
imaging is a well-established problem. Most digital cam-
eras allow users to set the compensation ratio for exposure
bracketing, while mobile cameras typically impose fixed ra-
tios during automatic exposure bracketing. Heuristic strate-
gies based on the histogram are proposed by [5, 21, 30],
to balance single-to-noise ratio (SNR) and saturation. The
work by [6] firstly formulates this challenge as a constrained
optimization problem in the linear RGB domain, address-
ing the scenario that follows multiple exposure fusion and
precedes tone mapping and denoising. This concise for-
mulation facilitates the use of a straightforward numerical
solver. Further extensions of this formulation consider the
alignment of multiple input images to account for hand-
shake [24]. In the context of structured light 3D reconstruc-
tion, various exposures are likewise treated as an optimiza-
tion problem [4]. Exposure influences not only the noise but
also, to some extent, the tone of the image in the standard
RGB domain. Evaluating the final image quality compli-
cates the problem further, as subsequent tone mapping or
retouching can significantly alter image quality. Therefore,
a neural network is utilized to estimate exposures and fuse
multiple exposed images to achieve optimal fidelity in the
gamma-corrected domain [12]. Additionally, reinforcement
learning is employed by [37] and [32] to assess the rewards
on comprehensive image quality after more sophisticated
tone adjustment.
Challenge in dynamic scenes. In static scenes, increas-
ing under-exposures can reduce saturation, and a longer
shutter speed improves signal-to-noise ratio in dark areas.
However, in dynamic scenes, excessive exposure may cause
ghosting artifacts, and a prolonged shutter speed can lead to
motion blur. Consequently, heuristic exposure bracketing
is usually limited to two or three EV settings [5, 30]. The
method by [6] imposes an upper limit on total shutter speed,
while [24] addresses handshake motion through image reg-
istration but scarcely tackles local object motion. Most ap-
proaches do not fully address motion in dynamic scenes,
leaving motion blur and ghosting artifacts to be addressed
through post-processing.

3. Method
Conventional weighted linear combination methods, such
as exposure fusion, provide straightforward SNR estimation
but fail in dynamic scenes where moving objects create un-
quantifiable motion blur and ghosting artifacts due to mis-
alignment. Our approach addresses these challenges dur-
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Figure 2. Our blur-aware data synthesis pipeline.

ing capturing rather than in post-processing, as the latter is
shown to yield suboptimal results. We predict exposure-
related risks—such as motion blur, ghosting, noise, and sat-
uration—based on a limited number of previously captured
frames. Additionally, we employ a sequential strategy for
exposure and ISO parameter determination, rather than si-
multaneously predicting settings for all three LDR images,
which reflects the iterative nature of auto-exposure in mo-
bile cameras that enables adaptation to significant bright-
ness transitions.

3.1. Blur-aware data synthesis pipeline
To simulate capturing in real environments, we designed an
image synthesis pipeline to generate realistic motion blur
and noise in LDR images from HDR videos in the train-
ing dataset, for use in training. Typical exposure settings
involve adjusting the exposure value (EV), which is calcu-
lated as:

EV = log2

(
F 2

T
× 100

ISO

)
, (1)

where F denotes the aperture’s f-number, ISO represents
the ISO sensitivity and T is the exposure time in seconds.

Similar to recent methods [6, 21, 32] concerning high
dynamic range capture, we assume that aperture and focus
are held constant to prevent changes in defocus. This leaves
just two camera settings to manipulate: (1) Shutter speed,
which controls the amount of light to collect, and (2) ISO,
which determines the sensor gain.

Our pipeline synthesizes motion blur and noise for the
ground truth static HDR image based on a specified ISO
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Figure 3. The training scheme of AdaptiveAE. States are defined as the three LDRs synthesized using predicted ISOs and shutter speeds.
Starting from s0 where the three LDRs has EV {−2, 0,+2} with arbitrary EV 0 baseline, ISOs and shutter speeds, the agent sequentially
predicts, customizes or inherits capturing parameters (i.e. ISO and shutter speed) for the next stage and synthesize the corresponding LDR
using our image synthesis pipeline. Unlike training, the LDRs will be captured rather than synthesized during inference.

and shutter speed. As depicted in Fig. 2, it uses two con-
secutive static HDR images as input. Motion blur is first
synthesized according to shutter speed to produce a blurred
HDR image in linear space. Next, noise is added based on
shutter speed and ISO to create an LDR image, reflecting
our exposure choice. Note that motion blur should be ap-
plied before adding noise, as it influences the raw input by
affecting the number and pattern of captured photons during
photography.
Synthesizing blur. On-the-shelf training datasets consist of
consecutive HDR ground truth of a scene with motion. Now
we explain how we simulate motion blur to a frame of HDR
fLi , as shown in Fig. 2b, which is the i-th HDR ground truth
frame in the dataset scene, and the superscript L indicates
it is in linear space. We first use µ-law tone-mapping with
µ = 5000 to transfer fLi and fLi+1 from HDR space to LDR
space where the image interpolation algorithm we applied is
trained upon, receiving fTi and fTi+1, where the superscript
T denotes they are in LDR space. Then we use RIFE [7] to
interpolate the them to 256 frames and get the sequence of
images {fTi , sT1 , sT2 , · · · , sT254, fTi+1}. Then for the selected
shutter speed Tj for the j-th LDR lTj to take, the blurred
HDR bLj is simulated as:

bLj = iTMO(
fTi +

∑mj

m=1 s
T
m

mj
),mj =

⌈
256Tj
∆τ

⌉
, (2)

where ∆τ denotes the time elapsed from fLi is taken to
fLi+1 is not yet taken and iTMO indicates the inverse µ-
law tonemapping function with µ = 5000.
Synthesizing noise. We adopt the noise model mentioned
in [6], in which noise is modeled as a zero-mean variable,
coming from three independent sources, including photon
noise, which represents the Poisson distribution of photon
arrivals and depends linearly upon the number of recorded

electrons, ΦT , readout noise, which comes from sen-
sor readout, and analog-to-digital conversion(ADC) noise,
which comes from the combined effect of amplifier and
quantization. Hence, for pixels below the saturation level:

V ar(n) =
ΦT × ISO2

U2
+
σ2

read × ISO2

U2
+ σ2

ADC, (3)

where Φ is the radiance level, T is the shutter speed, U is a
camera-dependent variable.

Following our noise model, as shown in Fig. 2c, we can
synthesize the corresponding noise with selected ISO and
shutter speed to the blurred HDR bLj to get the LDR image
lTj . For details, please refer to our supplementary material.

3.2. Problem formulation of AdaptiveAE
Given a scene, the goal of AdaptiveAE, which has access
to three initial preview LDR images {pTj }1,2,3 (i.e. under-
exposed, mid-exposed, overexposed) before capturing, is to
find an optimal exposure setup (i.e. ISO and shutter speed)
for LDR capturing, with which the fused HDR output will
result in pleasing visual performance.

Our method formulates exposure bracketing as a Markov
Decision Process [22], solved via deep reinforcement learn-
ing to refine exposure parameters (ISO, shutter speed) se-
quentially. As illustrated in Fig. 4, the process starts from
three LDRs at a default {−2p, 0p,+2p} EV spacing relative
to an arbitrary reference (subscript p). The refinement then
proceeds in stages, as shown in Fig. 3.

First, the agent predicts optimal parameters for the mid-
exposed frame, establishing a new 0-EV reference (sub-
script x). The side frames are then customized—their
parameters are procedurally set to achieve a symmetric
{−2x, 0x,+2x} EV bracket. Next, the agent refines the
underexposed frame to an EV of −yx. The mid-exposed
frame (0x) is inherited (its parameters are reused), while
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Figure 4. Training pipeline of our method. The ISO and shutter speed prediction process is conceptualized as a Markov Decision Process,
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optimized using the A3C (Asynchronous Advantage Actor-Critic) method [18].

the overexposed frame is customized to +yx to maintain
symmetry, yielding {−yx, 0x,+yx}. Finally, the agent pre-
dicts the overexposed frame’s EV as +zx, creating a poten-
tially asymmetric set {−yx, 0x,+zx}. This sequential pre-
diction can be extended, as our adopted fusion method [7]
handles more than three LDRs. A video providing further
details on this process, along with an example of extended
exposure bracketing, is available in the supplementary ma-
terials.

3.3. Optimization objectives
Let us denote the problem as P = (S,A), where S is
a state space and A is an action space. Specifically, in
our task, S is the space of the exposure setups (i.e., ISO
and shutter speed) for an LDR set that typically contains
three LDRs (i.e. under-exposed, mid-exposed, and over-
exposed), while A is the set of all possible ISO and shut-
ter speed combinations, which is discrete. During training,
at stage sj = {(ISOj1, Tj1), (ISOj2, Tj2), (ISOj3, Tj3), },
we first find the corresponding HDR ground truth image
pairs (fLi , f

L
i+1)1,2,3 and generate the corresponding LDRs

{lTj }1,2,3 through our image synthesis pipeline in Fig. 2.
The footnote 1, 2, 3 denotes that the same operation is
done for the under-, mid-, and over-exposed LDRs. Tak-
ing {lTj }1,2,3 as input, the agent predicts an action aj =
(ISOj , Tj), which is expanded to an exposure setup for
three LDRs by customizing EV or inheriting from state
sj−1, mapping state sj to state sj+1. Adding a sequence
of M LDRs to exposure bracketing corresponds to a trajec-
tory τ of states and actions:

τ = (s0, a0, · · · , sM−1, aM−1, sM ), (4)

where sM is the stopping state. Our goal is to find a policy
that maximizes the accumulated reward during the decision-
making process. In this paper, the reward function with the
j-th action (i.e., corresponding to deciding the exposure set-
ting for the j-th LDR for exposure fusion) is thus written as:

r(sj , aj) = R(sj+1)−R(sj)− P(j), (5)

where sj+1 = p(sj , aj), and R denotes our reward design
and P denotes the Lstep penalty, detailed in 3.4.

As depicted in Fig. 4, our model comprises a policy net-
work and a value network, both of which utilize a CNN-
based architecture. The policy network predicts the optimal
ISO and shutter speed for the subsequent exposure, out-
putting a distribution of action probabilities π(s, θ) for an
input image s. Concurrently, the value network V π(s, ω)
estimates the corresponding state value. These networks,
with combined parameters ψ = (θ, ω), are trained by maxi-
mizing our objective J(θ)ψ to learn the optimal policy π(s).
Specifically, to train the policy network and the value net-
work, we apply the A3C (Asynchronous Advantage Actor-
Critic) method [18], where the actor is represented by the
policy network and the critic is the value network. Network
details are in the supplementary materials.

3.4. Reward
When designing the reward function for our system, we
considered four key factors: (1) similarity between the
fused HDR and the ground truth HDR; (2) quality of im-
portant regions in the fused HDR; (3) quality of moving
regions in the fused HDR; and (4) a penalty for overly long
LDR stacks. Thus, our reward function is:

R = −(Pconstruction + Ppriority + Pghost). (6)

We consider Pconstruction, the L2 loss between our fused
HDR and the ground truth, as our major reward component,
which is affected by noise and saturation. Note that through
the entire sequential decision process, the middle-exposed
frame is used as a reference for HDR fusion. Conforming
to Eq. (3), during training, noise is synthesized according to
the irradiance of ground truth HDR, and during inference,
noise is estimated with the irradiance of noisy signals.



Ppriority represents an L2 loss within the areas in the im-
age masked by an importance mask, which is generated by a
saliency predictor [20]. This ensures that the highest quality
is maintained in the most significant areas, thereby enhanc-
ing the overall visual fidelity where it matters most.
Pghost is also an L2 loss within a masked area, denoting

areas with large motions and thus having a higher risk of
motion blur- or ghosting-caused HDR quality degradation.
The mask is computed by calculating the optical flow using
RAFT [28] between the HDR ground truth of the middle-
exposed frame (i.e., the reference frame for fusion) and the
corresponding HDR fLi and selecting the pixels where the
mode of the flow vector exceeds a constant threshold K.
Normalizing the largest optical flow vector, we empirically
set K to 0.2. Pghost guides the agent to deal more carefully
with regions that are prone to artifacts caused by motion and
is helpful for high-quality HDR capturing, as is verified by
the result of our ablation studies in Tab. 2.

P(j) is a penalty designed to penalize excessively long
exposure brackets. Capturing an excessive number of shots,
such as 10, even with random exposure settings, can lead to
nearly perfect HDR fusion results, but it is time-consuming.
Typically, three shots [2, 6, 21] are sufficient to achieve
high-quality outcomes. To this end, we incorporate a
penalty for taking more than three shots, as follows:

P(j) =

{
0 if j ≤ H

α(j −H)2 if j > H
, (7)

where α is a positive coefficient and H is set to 3.
In this manner, the autonomous agent optimizes expo-

sure parameters by predicting relatively fast shutter speeds
for LDR images, particularly for the middle-exposed refer-
ence frame, thereby minimizing motion blur while avoid-
ing excessive ISO values that would introduce noise-related
degradation. When confronted with potential ghosting arti-
facts—which emerge from information deficiency in LDR
images due to concurrent saturation and motion—the agent
adaptively selects EVs that minimize both underexposure
and saturation, resulting in a significant reduction of ghost-
ing artifacts in the final reconstruction.

4. Experiments
Experiment details. We use Real-HDRV [26] for training
and tested our performance on Real-HDRV [26] and Deep-
HDRVideo [3]. For HDR fusion, we adopt DeepHDR [33]
to generate the HDR image based on the selected exposure
bracketing. Additionally, we set the number of LDR frames
to 3 for all methods involved. For methods that do not ac-
count for changes in ISO values, we set the ISO to 200 as a
standard value for most cases, which is rationalized in our
supplementary materials. Since RIFE [7] is relatively time-
consuming, the image interpolation and blur synthesis step

is performed before training. We apply random flipping,
rotation, and cropping with 512 × 512 pixels for data aug-
mentation. Our training dataset consists of a total of 770
scenes, including 440 dynamic and 330 static scenes.
Evaluation metrics. We directly evaluate the performance
of the fused HDR results. Similar to previous HDR fu-
sion methods [7, 14, 19], we employ PSNR-µ, SSIM-µ,
PU-PSNR, PU-SSIM, and HDR-VDP-2 [16] as evaluation
metrics. PSNR-µ and SSIM-µ denote PSNR and SSIM
of the fused HDR after µ-law tone-mapping with µ=5000.
PU-PSNR and PU-SSIM are computed after perceptually
uniform encoding [1]. When computing the HDR-VDP-2
[16], the diagonal display size is 30 inches.

4.1. Results

Results on Real-HDRV dataset. We compared our trained
agent’s performance with several state-of-the-art HDR ex-
posure bracketing methods, including Pourreza-Shahri et
al. [21], Hasinoff et al. [6], and Wang et al. [32]. The
first two are non-deep-learning methods that do not con-
sider motion: Pourreza-Shahri et al. use K-means cluster-
ing to adjust shutter speed based on image brightness, while
Hasinoff et al. mathematically optimize ISO and shutter
speed for the best worst-case SNR. Wang et al. utilize rein-
forcement learning to predict shutter speed for maximizing
PSNR, but also ignore motion.

Our method achieves state-of-the-art performance on the
HDRV-Test dataset, as shown in Tab. 1. By treating ISO as
a variable, it provides flexibility in handling extremely dark
scenes. Additionally, it excels in dynamic scenes due to a
blur synthesis model and carefully designed rewards. Thus,
our model effectively balances noise reduction and motion
artifact minimization, delivering high-quality HDR results.
Visualization results in Fig. 5 show that deep learning-based
exposure fusion models affect EV selection differently. In
Hasinoff et al.’s setup, three LDRs are equally weighted,
but dynamic scenes require a reference image, emphasiz-
ing the middle-exposed LDR’s quality. This often shifts
its EV toward under-exposure to reduce motion blur. Our
experiments confirm that if the middle-exposed image is
blurry—a common problem in other methods—the fused
HDR will also be blurred.
Inference time. Our method takes less than 250 ms for each
HDR image, which is acceptable. With average exposure
time n (≤ 30ms) and prediction time m (≤ 10ms), the to-
tal execution time is 6n+ 3m (≤ 250ms). This can be fur-
ther lowered to 6n (≤ 200ms) adopting concurrency. Note
that DeepHDR is only required during training for calcu-
lating rewards, and on-camera inference can be performed
with a small agent, taking only 3.5ms for each frame with-
out optimization. Besides, our method can be further ac-
celerated by on-camera processors when applied to DSLRs.
More discussions are in our supplementary materials.
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Figure 5. Qualitative comparisons with other auto-exposure methods on HDRV dataset [26]. Left: Predicted LDRs with varying ISO
and shutter speed settings and synthesized using our image synthesis pipeline. Middle: Fused HDR image using DeepHDR [7] and tone-
mapped using Photomatix. Right: Zoom-in results for tested methods.

Table 1. Comparison of Different Methods. We utilized one preview image and three preview images, respectively, for the compared
methods and our method to predict exposure settings for three LDRs. We leveraged DeepHDR [7] for exposure fusion and used the
mentioned metrics to evaluate the quality of the fused HDR. Bold: The best.

Methods
HDRV [26] DeepHDRVideo [3]

PSNR-µ SSIM-µ HDR-VDP-2 PU-PSNR PU-SSIM PSNR-µ SSIM-µ HDR-VDP-2 PU-PSNR PU-SSIM

Pourreza et al. [21] 33.64 0.8617 54.55 30.61 0.8679 35.57 0.8780 55.67 31.59 0.8791
Hasinoff et al. [6] 37.59 0.9052 57.02 32.87 0.8980 38.47 0.9157 58.65 34.45 0.9132
Wang et al. [32] 36.46 0.8902 56.09 32.68 0.8933 37.95 0.9019 57.39 33.27 0.9008

Ours 39.70 0.9408 59.20 34.67 0.9465 39.81 0.9371 58.90 36.19 0.9338

Table 2. Ablation study of AdaptiveAE on HDRV [26] dataset.
Base denotes our model trained with only the step penalty and
construction reward. Bold: The best.

Model PSNR-µ SSIM-µ PU-PSNR PU-SSIM
Base 38.21 0.9227 32.68 0.9198
Base+Ppriority 38.57 0.9261 33.02 0.9239
Base+Ppriority+Pghost 39.70 0.9408 34.67 0.9465

Gap to the best-achievable. For each scene in the test set
of Real-HDRV, we iteratively search for the best set of pre-
dictions by Gaussian sampling around our initial prediction
(50 times per exposure parameter per frame, with a devia-
tion of 20% of the mean for both ISO and shutter speed).
Statistics in Tab. 4 show that our method approaches the lo-
cally optimal result while being efficient.
Cross datasets test. To test the generalization ability of our
model, we also evaluated the performance of our trained
agent on DeepHDRVideo [3], as shown in the right of
Tab. 1. Our agent exhibits good generalization abilities.

Table 3. Comparison of different exposure fusion methods. We
utilize the four auto-exposure methods to predict exposure settings
and employ our image synthesis pipeline to create three LDRs.
Then, we apply different exposure fusion methods to fuse them
and compare the HDR quality on the HDRV dataset [26]. HDR-
Transformer [14] is pretrained on HDRV [26] dataset. P: PSNR-µ,
S: SSIM-µ. Pou: Pourreza et al. [21], Has: Hasinoff et al. [6], W:
Wang et al. [32]. HDR-Trans: HDR-Transformer. Bold: The best.

Model
DeepHDR HDR-GAN HDR-Trans

P-µ S-µ P-µ S-µ P-µ S-µ
Pou 33.64 0.8617 35.71 0.8892 35.84 0.8824
Has 37.59 0.9252 38.58 0.9263 39.11 0.9372
W 36.46 0.9002 37.95 0.9169 38.89 0.9210
Ours 39.70 0.9408 40.73 0.9376 41.37 0.9478

Since the DeepHDRVideo dataset only provides ground
truth HDR for the middle image in the sequence, we syn-
thesize HDR for the other images using DeepHDR [33].
Cross HDR fusion methods test. In our training scheme,



Table 4. Performance comparison investigating the gap between
our method and the optimum on the HDRV-test dataset.

Ours Worst Average Best
PSNR-µ 39.70 25.76 32.41 39.93
SSIM-µ 0.9408 0.7738 0.8609 0.9412

Wang et al. Hasinoff et al. Ours

Figure 6. Results of our real capture data. The subject performs
steady and repetitive movements, taking shots according to the ex-
posure settings predicted by various methods.

we used DeepHDR for exposure fusion. For further test-
ing, we adopted different exposure methods, including
HDR-GAN [19] and HDR-Transformer [14] (pre-trained on
the HDRV-dataset [26]), as post-processing exposure fu-
sion methods. All tests are conducted on the HDRV-Test
dataset. As shown in Tab. 3, without considering motion
before LDR capturing, however powerful an exposure fu-
sion method (i.e. HDR-GAN and HDR-Transformer) fails
to yield a satisfactory result. Notably, when stronger fusion
models are used, the performance gap between our model
and traditional models, which do not account for motion,
increases. This is because, when blur and ghosting risk
are mitigated, post-processing models can effectively man-
age the remaining challenges. In contrast, ignoring motion
makes these challenges more difficult for post-processing
models, leading to potential failure.
Results for real capture. We used a SONY Alpha 7C-II
to evaluate our model on real-world scenes. Subjects per-
formed steady, repetitive movements while ISO and shutter
speed were manually set for each capture, with the aperture
fixed at f/2.8. The camera and subject positions remained
unchanged during multi-exposure captures. As shown in
Fig. 6, our method provides noise control comparable to
other baselines while effectively mitigating motion blur,
which can impair the visual quality of the fused HDR im-
age; for more results, see our supplementary materials.

4.2. Ablation studies
Effectiveness of penalty item. We conduct ablation stud-
ies to validate the effectiveness of our reward design. All
quantitative evaluations are conducted on the HDRV-Test
dataset. We train our networks using only the construction

Under-exposed Middle-exposed Over-exposed

Figure 7. Left: Zoom-in details of the moving regions and our
predicted ISO and shutter speed (seconds) for each LDR. Up:
LDRs for scenes with an average motion level of around 30 pix-
els, Down: around 60 pixels. Right: Comparisons with base-
line methods across different motion magnitude ranges. Tested on
Real-HDRV [26] dataset.

reward and step penalty as the base model and test the ef-
fectiveness of Pghost and Ppriority. As shown in Tab. 2, these
two reward elements enhance our agent’s performance by
directing the model to focus on semantically important re-
gions and moving areas. The former typically corresponds
to the scene’s focal point (e.g. a person’s face), while the lat-
ter involves regions at high risk of motion blur and ghosting
artifacts. Qualitative evidence is provided in our supple-
mentary materials.
Robustness to dynamic scenes. We offer a pair of exam-
ples from the Real-HDRV [26] dataset with around 30 and
60 pixels of regional movement, respectively. As shown in
Fig. 7: Left, our trained agent tends to predict faster shutter
speeds for scenes with stronger movement, validating the
responsiveness of our agent in dynamic scenes. We assess
our method’s performance against previous auto-exposure
methods [6, 32] at varying motion magnitudes (Fig. 7:
Right). To create the evaluation dataset for robustness to
different motion levels, we follow HDRFlow [34], using
RAFT [28] to process dynamic scenes from HDRV and ob-
tain optical flow maps. We then manually crop these images
with reasonable flow predictions, dividing them into 128 ×
128 blocks, and calculate the average motion magnitude for
each block. Finally, we evaluate the PSNR of blocks cor-
responding to different motion magnitudes. As shown in
Fig. 7: Right, our AdaptiveAE demonstrates greater robust-
ness than other methods as motion magnitude increases.

5. Conclusion

We introduce AdaptiveAE, which optimizes HDR expo-
sure in dynamic settings using deep reinforcement learning,
treating exposure bracketing as a Markov Decision Process.
It autonomously adjusts ISO and shutter speed for a pre-
trained exposure fusion algorithm. Reward systems focus
on moving and key regions, minimizing sequence lengths.
Experiments show AdaptiveAE outperforms state-of-the-art
methods in dynamic scenes while matching top models in
static ones, allowing flexible HDR capture. Our analysis of
noise models and exposure settings offers insights for future
research, with plans to include adjustable apertures.
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A. More experimental results
A.1. More visual comparison results
As shown in Fig. A1, we present additional qualitative re-
sults on the HDRV [26] dataset. Our method strikes a bal-
ance between the impact of motion-related artifacts and the
overall noise level, resulting in the best quality among all
auto-exposure techniques.

Fig. A2 shows qualitative results for the ablation experi-
ments on Pghost on a case in the DeepHDRVideo [3] dataset;
this penalty item effectively helps with mitigating ghosting
and motion blur.

A.2. Cross post-processing methods test
To validate the importance of addressing motion blur and
ghosting during auto-exposure, we compared our results
with Wang et al. [32], applying deblur methods at various
stages: before, during, and after exposure fusion. For fair-
ness, we trained the deblur models [2, 7] on our HDRV-blur
dataset, created by adding random motion blur to HDR im-
ages from the HDRV dataset using our synthesis pipeline.
For pre-fusion deblurring, BANet [29], trained on HDRV-
blur, was used to process the predicted LDRs before fu-
sion with DeepHDR [7]. For fusion deblurring, we utilized
DeepHDR’s intrinsic deblurring ability, trained on HDRV-
blur, without employing BANet. For post-fusion deblur-
ring, BANet was applied after DeepHDR fusion. As shown
in Tab. A1 and Fig. A3, post-capture deblur minimally re-
duces blur in the fused HDR image but degrades static re-
gions, highlighting the efficacy of addressing blur during
LDR capture.

A.3. Analyzing the role of ISO
In our experiments (Sec. 4), we set the ISO for fixed-ISO
baselines to 200, as it serves as a standard choice in most

*This work was done during Tianyi Xu’s internship at Shanghai AI
Laboratory.

†Corresponding authors.

scenarios. This raises the question of whether better results
can be achieved by modifying the fixed ISO to an alterna-
tive value in the method proposed by Wang et al. [32]. To
investigate this, we use Wang et al. [32] to predict the expo-
sure values (EVs) for three low dynamic range images and
systematically test all possible fixed-ISO settings to identify
the value that maximizes the PSNR-µ on the test set. We de-
note this approach as W-optimal, where W refers to Wang et
al. [32]. As illustrated in Tab. A2 and supported by the qual-
itative results in Fig. A4, utilizing the optimal fixed ISO re-
sults in slight performance improvement. However, this op-
timal ISO is highly dataset-specific and demonstrates very
limited generalization capability, further validating the ro-
bustness and superiority of our proposed method over fixed-
ISO approaches.

A.4. More discussions on inference time
Our RL agent executes in <5ms/scene on an NVIDIA
RTX3080. The primary contributor to the latency, six LDR
captures, can mostly be eliminated if we use the frames
cached in the preview buffer, also known as the ZSL (Zero
Slag Latency) buffer, which is the de facto standard for mo-
bile phones. Utilizing an asynchronous camera driver, it has
the potential to achieve real-time performance. In contrast,
existing methods that use previously captured histograms
for exposure prediction incur 30-70ms latency and are not
robust to movement. Even without a viewfinder buffer,
our inference speed can also be optimized with digital-
overlap (DOL) sensors (to <100 ms/frame) and AE stats
grid (around 32x24, downsampled from ISP 3A).

A.5. More frames
Our design of the reward and the step penalty (Eq. (7))
may result in a predicted exposure bracketing set contain-
ing more than three frames. Fig. A5 illustrates a case where
our model makes a four-frame decision. Given our design
of the step penalty, this occurs in only a small percentage of
scenes with significant dynamic ranges and movements.
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Figure A1. Additional qualitative comparisons with other auto-exposure methods on HDRV dataset [26]. Upper left: Predicted LDRs
with varying ISO and shutter speed settings and synthesized using our image synthesis pipeline. Upper right: Fused HDR image using
DeepHDR [7] and tone-mapped using Photomatix Enhancer. Below: Zoom-in results for tested methods.

LDRs w/o ghost penalty w/ ghost penalty

Figure A2. Effectiveness of ghost penalty.

B. Details of the noise synthesis model

We synthesize noise to the blurred HDR image bLj according
to our noise model, which is based on [6]. The quantity each
pixel measures is the radiance level Φ, in units of electrons
per second. Therefore, the pixel value I of a raw image can
be expressed as:

I = min
{
ΦT × ISO

U
+ I0 + n, Imax

}
, (A1)

Table A1. Results for ablation studies for different deblur post-
processing techniques. We use Wang et al. [32] as the base model
(denoted as W), and Pre-BA denotes using BANet [29] to process
the LDRs before exposure fusion. BD denotes using blur-aware
DeepHDR [7] for exposure fusion, which is trained on the HDRV-
blur dataset we synthesized from the HDRV [26] dataset. Post-BA
denotes using BANet to deblur the final tone-mapped HDR. Bold:
The best.

Model PSNR-µ SSIM-µ PU-PSNR PU-SSIM
W 36.46 0.8902 32.68 0.8933
W+Pre-BA 37.33 0.9095 33.24 0.9100
W+BD 37.01 0.9016 32.83 0.8972
W+Post-BA 37.25 0.9124 32.88 0.9023
Ours 39.70 0.9408 34.67 0.9465

where T denotes the exposure time in seconds, U is a
camera-dependent constant, I0 represents the electrons cre-
ated by dark current, n is the signal- and gain- dependent
sensor noise and Imax indicates the full well capacity.
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Figure A3. Necessity of considering motion blur during LDR capturing. We compared our method on the HDRV dataset [26] with Wang et
al. [32] combined with different post-processing deblurring methods. W denotes Wang et al., Pre-BA denotes applying BANet [29] to
LDRs for fusion. BD denotes DeepHDR [7] trained on the HDRV-blur dataset. Post-BA denotes applying BANet to the tone-mapped
fused HDR result.

Ours W W-optimal

Figure A4. Ablation on the role of ISO in fixed-ISO methods.
We choose the PSNR-optimal fixed-ISO for Wang et al. [32] (rep-
resented by W) that optimizes the PSNR of generated HDR on
HDRV-Test dataset [26], denoted as W-optimal. Upper left: Pre-
dicted LDRs with varying ISO and shutter speed settings and syn-
thesized using our image synthesis pipeline. Upper right: Fused
HDR image using DeepHDR [7] and tone-mapped using Pho-
tomatix Enhancer. Below: Zoom-in results for tested methods.

Scene 3 frames 4 frames Ground truth

Figure A5. An example scene for which our models give a 4-frame
decision. 3-frame denotes a truncated version of the prediction,
which has obvious ghosting patterns.

Conforming to the paradigm of [6], we model noise
as a zero-mean variable, coming from three independent
sources, including photon noise, which represents the Pois-
son distribution of photon arrivals and depends linearly
upon the number of recorded electrons, ΦT , readout noise,
which comes from sensor readout, and analog-to-digital
conversion(ADC) noise, which comes from the combined
effect of amplifier and quantization. Hence, for pixels be-
low the saturation level, we have:

Table A2. Ablation study of the impact of ISO on fixed-ISO meth-
ods on HDRV [26] dataset. W denotes Wang et al. [32] and W -
optimal denotes setting the fixed ISO of Wang et al. [32] to optimal
value for SNR cross all available ISOs. Bold:best.

Model PSNR-µ SSIM-µ PU-PSNR PU-SSIM
W 36.46 0.8902 32.68 0.8933
W -optimal 37.64 0.9033 33.01 0.9058
Ours 39.70 0.9208 34.67 0.9465

V ar(n) =
ΦT × ISO2

U2
+
σ2

read × ISO2

U2
+ σ2

ADC. (A2)

Note that the rationality of modeling ADC noise as inde-
pendent of ISO lies in the fact that the quantization process,
which could be represented by q(x) in the following equa-
tion:

q(x) = min(⌊x+ 0.5⌋ , ADU), (A3)

where ADU (Analog-to-Digital Units) denotes the maxi-
mum value that can be recorded by the sensor, for a target
camera that records scenes as b-bits raw images, ADU =
2b − 1, this q function is independent of ISO settings. The
post-amplifier noise is also naturally independent of the
foreground imaging settings.

Following our noise model, we can synthesize the cor-
responding noise with the decided ISO and shutter speed
to the blurred HDR bLj , thereby obtaining the LDR image
lTj . This noise model facilitates the synthesis of LDR im-
ages with various ISO and shutter speed settings. Moreover,
it accurately simulates the actual noise that arises in pho-
tography, helping our model to exhibit good generalization
abilities on various datasets and real data.



Denoting the entire image synthesis process, which con-
sists of motion blur synthesis and adding noise, as S, and
the corresponding LDR output as lTj , we have:

lTj = S(fTi , fTi+1, (ISOj , Tj)). (A4)

where ISOj and Tj are bracketed to denote that they are a
pair of camera settings.

C. Network details
The architecture of our proposed AdaptiveAE network
comprises two primary components: a Policy Network and
a Value Network. The Policy Network is responsible for
producing two output layers: one with 24 units for ISO se-
lection and another with 19 units for shutter speed selec-
tion. Specifically, the ISO space consists of 24 possible set-
tings—{50, 64, 80, 100, 125, 160, 200, 250, 320, 400, 500,
640, 800, 1000, 1250, 1600, 2000, 2500, 3200, 4000, 5000,
6400, 8000, 10000}—and the shutter speed space contains
19 possible values—{1/30, 1/40, 1/50, 1/60, 1/80, 1/100,
1/125, 1/160, 1/200, 1/250, 1/320, 1/400, 1/500, 1/640,
1/800, 1/1000, 1/1250, 1/1600, 1/2000}. The Policy Net-
work employs softmax activation functions for both out-
puts, providing probability distributions over possible ISO
and shutter speed configurations. In contrast, the Value Net-
work outputs a single-unit layer, which estimates the state
value. To ensure non-negative outputs, the Value Network
incorporates a ReLU activation function. The separation of
the Policy and Value Networks facilitates efficient decision-
making by modeling both action distribution and state eval-
uation independently, allowing the system to adapt effec-
tively to varying exposure conditions.

C.1. Semantic feature branch
The semantic feature branch leverages pre-trained AlexNet
features, initially with a dimensionality of 4096. We apply
this branch to the median-exposed LDR image from the in-
put set. These semantic representations are transformed us-
ing a two-layer fully connected architecture. The first layer
comprises 1024 neurons, while the second has 256 neurons,
both with ReLU activation.

C.2. Irradiance feature branch
The irradiance feature branch processes exposure informa-
tion from multiple LDR images by extracting histograms
from each LDR image separately and concatenating them
along the channel dimension. This multi-exposure his-
togram data is processed through three sequential 1D con-
volutional layers: the first with 128 filters, the second with
256 filters, and the third with 512 filters, all using a ker-
nel size of 4 and a stride of 4. Following this, two fully
connected layers with 1024 and 256 neurons, respectively,
process the features, maintaining ReLU activation through-
out.

C.3. Stage encoding branch
The stage encoding branch introduces a temporal dimension
to the network by encoding both the current exposure iter-
ation and the total planned exposures. It processes a two-
dimensional input (current stage, total stages) through two
layers: the first with 32 neurons and the second with 64
neurons, both activated by ReLU functions. This enhance-
ment allows the network to adapt its strategy based on the
remaining exposure budget.

C.4. Feature fusion mechanism
Features from the multiple LDR inputs, semantic, irradi-
ance, and stage encoding branches are concatenated and
processed through two fusion layers for comprehensive in-
tegration. The first fusion layer includes 512 neurons, fol-
lowed by a second layer with 256 neurons, both using ReLU
activation. This thorough fusion of features equips the net-
work with the capacity to synthesize multi-modal informa-
tion, thereby enhancing predictive accuracy.

Despite accepting multiple LDR inputs directly into
each processing branch, the architecture maintains compu-
tational efficiency with approximately 7-8 million parame-
ters, achieving inference times under 10 milliseconds, mak-
ing it suitable for real-time applications in computational
photography and image signal processing.


