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Abstract—In this paper, we introduce OpenCIR, a fully-
functional Conditional Image Repainting (CIR) model designed
for local image editing. Given an image and a combination of
conditions related to geometry, texture, and color, CIR models
are required to repaint instances and seamlessly composite them
with the original images. Previous CIR models suffer from limited
object categories, restricted condition modalities, and demanded
geometry precision. In contrast, leveraging the generative priors
from pre-trained models, OpenCIR could repaint open object
categories. Equipped with redesigned condition injection modules
and the condition extension strategy, OpenCIR is able to under-
stand open condition modalities. Adopting the contour refinement
strategy, OpenCIR allows users to specify instances with open
geometry precision. In addition, we contribute the OPEN-CIR
dataset, which includes detailed annotations, tailored for the
comprehensive training and evaluation of the OpenCIR model.
Extensive experiments demonstrate that OpenCIR outperforms
relevant state-of-the-art methods, achieving superior visual qual-
ity, and more favorable results by human evaluators.

Index Terms—Image synthesis, diffusion model, cross-modality

I. INTRODUCTION

ECENT advances in image editing techniques have
significantly progressed in manipulating specific image
properties, e.g., color [7], [35], [77], [85], texture [16], [29],
[41], [80], instance contour [53], [70], [78], [83], and overall
scene composition [17], [40], [59], [73]. To capture users’
editing requests more accurately, there is growing interest
in guiding image editing through a combination of multiple
cross-modality conditions [28], [52], [81], [84]. These break-
throughs lead to applications that lower the expertise barrier
for users, e.g., imitating the style of a famous painter [71].
In pursuit of stronger controllability, generative models
evolve to more effectively disentangle editing objectives,
determining where to place instances within edited images,
what those instances are, and how they should appear. In
this context, Conditional Image Repainting (CIR) emerges
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as an innovative task [63], [64], [74]-[76], demonstrating
significant potential to address aforementioned issues. Given
conditions related to geometry (where), texture (what), and
color (how), CIR models repaint corresponding visual content
and composite it seamlessly with the original image.

Although CIR models have achieved notable improvements
in producing visually pleasing images, they still face three
primary challenges: (i) Limited object categories. Current
models are typically restricted by their capacity and available
training data, leading to a focus on repainting specific instance
categories (e.g., clothes [75], birds [74], and cars [64]). (ii)
Restricted condition modalities. CIR models are designed to
interpret each type of condition in a single modality (e.g.,
text for the color condition [76]). This limits the user’s
ability to express complex and nuanced objectives (e.g., color
variations). (iii) Demanded geometry precision. Existing CIR
models presuppose that edited regions are provided exactly the
same as the repainted instance contour [63], requiring users
to provide detailed and fine-grained annotations. This is not
aligned with user-friendly design principles.

To overcome the challenges in CIR models and unlock
their full potential, we introduce the OpenCIR, a fully-
functional conditional image repainting framework, tailored
for effectively decoupling the color and texture properties of
the editing goals. As a great variety of application scenarios
shown in Fig. 1, the “open” is reflected in three aspects: (i)
Open object categories. Unlike previous CIR models [63],
[75], [76], OpenCIR does not rely on category labels of the
geometry condition. Utilizing the generative priors from the
pre-trained generative model [57], OpenCIR demonstrates a
generalization capability to repaint various instances (e.g.,
abundant repainted categories in Fig. 1). (ii) Open conditional
modalities. We develop attention-based and spatially-adaptive
injection modules for color and texture conditions, respec-
tively. Equipped with the condition extension strategy, Open-
CIR supports diverse color (e.g., patches and histogram) and
texture (e.g., distinct drawing styles) conditions, allowing users
to selectively manipulate a specific property of the instance in
Fig. 1. (iii) Open geometry precision. To handle the feasible
boundary deviation, OpenCIR incorporates the contour refine-
ment strategy, utilizing user-provided conditions to adaptively
estimate appropriate instance contour. This strategy filters out
unnecessary repainted regions (e.g., deviated boundary around
the fingers and balloon) and produces harmonized repainted
results in Fig. 1.

For training and evaluating our model, we further contribute
the OPEN-CIR dataset, which consists of 5M training samples.
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Fig. 1. Tlustration of the fully-functional capabilities of the OpenCIR model. Given an image and a combination of conditions with open modalities and
geometry precision, OpenCIR repaints instances across open object categories and composites them seamlessly with original images. Typical application
scenarios include: (a)/(b) Preserving the color/texture property while modifying the texture/color condition for the specific instance. (c)/(d) Editing the
contour/appearance of the instance by modifying both color and texture conditions. (e)/(f) Removing/inserting specified instances in/into the original image

with user-provided conditions.

Each sample includes instance masks with varying precision as
the geometry condition, along with comprehensive annotations
of color and texture in various modalities. We summarize our
contributions as follows:

o We present a comprehensive dataset covering diverse sce-
narios and propose a fully-functional CIR model capable
of repainting open object categories.

o We redesign condition injection modules with “open”
principles, ensuring the CIR model’s compatibility across
diverse and mixed modalities.

« We present condition extension and contour refinement
strategies, enabling the model to decouple properties and
support open modalities and precision of conditions.

II. RELATED WORKS
A. Low-level image property editing

Recent advancements in low-level image editing works have
significantly improved the ability to modify specific properties
of an image, e.g., image colorization [8], [61] adds colors to
old photos, texture transfer [12], [33] changes the style of
images, and editable lighting [11], [65] adjusts the lighting in
the scene. Additionally, considerable efforts have been made to
restore lost details in images, e.g., image super-resolution [13],
[46], image denoising [43], [67], and image enhancement [15],
[49], as well as removing specific elements from images, e.g.,
reflection removal [26], [86], image demoiréing [20], [47],
and image dehazing [21], [44]. Since these methods focus on
modifying specific image properties, they fall short in further
editing high-level scene semantics, e.g., object categories.

B. High-level image semantic editing

High-level image editing methods explore various strategies
to modify object categories [36], [54], composite objects from
different images [9], [66], and remove objects entirely [45],
[82]. As generative models evolve from VAEs [23], [38] to
GANSs [19], [51], INNs [1], [2], and diffusion models [24],
[60], the conditions required from users have become in-
creasingly user-friendly. In the context of the image-to-image
translation task, Pix2Pix [32], [69] relies on paired data for
training. Subsequently, CycleGAN [88] showcases the ability
to train models using unpaired data. Furthermore, FlexIT [10]
takes a further leap by incorporating open-vocabulary text
descriptions to specify the target. Recent diffusion models have
shown remarkable progress in image editing with multiple
conditions. RePaint [48] employs the pre-trained DDPM [24]
as the generative prior and uses contextual regions to condition
the editing process. Meanwhile, SDEdit [50] edits images by
first adding noise to an image and then iteratively denoising
it, guided by a model within the SDE framework. Although
advanced ControlNet [84] designs modules to enable multi-
modal conditioning editing, the effective decoupling of fine-
grained editing objectives (e.g., independent control over tex-
ture, color, and placement) remains less explored.

C. Conditional image repainting

Conditional Image Repainting (CIR) is fundamentally a
high-level semantic image editing task that decouples low-
level image properties, e.g., color, texture, geometry, and
scene. CIR models [76] are proposed to “free” the users from
requiring professional skills while maintaining the “freedom”
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Fig. 2. Illustration of data annotation of the OPEN-CIR dataset.

to realize their ideas for editing an image. The earlier attempt
starts from synthesizing realistic person images [75], which
synthesizes the foreground person before composites it with
the background for harmonization. To support more flexible
color descriptions, Weng et al. [74] develop the semantic-
bridge attention mechanism, enabling CIR models to inter-
pret text descriptions. To break the two-stage dependency
in [74], [75], UniCoRN [63] introduces a unified architecture
that achieves more visually pleasing results. In particular,
LuminAlIRe [64] enhances the illumination consistency by in-
troducing physically-correct illumination modeling. However,
current CIR models are only capable of repainting limited
object categories, interpreting restricted condition modalities,
and adopting demanded geometry precision. These limitations
inspire us to develop the fully-functional OpenCIR.

III. DATASET

We present the OPEN-CIR dataset, tailored for the compre-
hensive training and evaluation of CIR models. This dataset
consists of 5M training samples and 1K testing samples,
significantly enriching the diversity of object categories.
Data collection. We begin creating our dataset by selecting
high-resolution images and their corresponding instance masks
from the SA-1B dataset [39] (Fig. 2 (a)). We crop each salient
instance guided by its mask, adding a randomly determined
margin for variability. Instances that are too small are excluded
to ensure each annotated instance has a resolution of at least
512 x 512. To further create binary instance masks with
varying precision, we then apply multiple Gaussian filters with
predefined parameters to each cropped mask (Fig. 2 (b)).
Condition annotation. During the annotation phase, we use
cropped foreground instances (Fig. 2 (c)) to annotate con-
ditions across various modalities, aiming to present detailed
and nuanced objectives for the CIR task. For color condi-
tions (Fig. 2 (d)), we adopt various approaches: transforming
instances into 8 x 8 color patches, applying various image
augmentations to synthesize reference images, calculating the
color histogram with 256 bins, and extracting color points
through random selection. Additionally, we carefully select

hyper-parameters of the BLIP-2 [42], utilizing it for generating
text descriptions'. For texture conditions (Fig. 2 (e)), we use
four distinct algorithms to create variant texture represen-
tations that potentially emulate distinct drawing styles, i.e.,
Laplace [18], Canny [5], Sketch [62], and Lineart [6]. As the
complete texture condition, we further extract grayscales by
converting the color space from RGB to Lab and then omitting
ab channels.

Dataset structure. Consequently, each sample in the OPEN-
CIR dataset includes essential components for training:
cropped foreground instances and corresponding background,
geometry conditions (i.e., binary instance masks with varying
precision), multi-modal color conditions (i.e., color patches,
text descriptions, reference images, color histograms, and color
points), and diverse texture conditions (i.e., Laplace, Canny,
Sketch, Lineart, and grayscale). OPENCIR dataset covers
common instance categories, including landscapes, animals,
persons, buildings, furniture, efc.

IV. OPENCIR MODEL

This section starts with an overview of our framework
(Sec. IV-A). Following this, we provide a comprehensive
illustration of condition injection modules (Sec. IV-B). Next,
we present the condition extension strategy (Sec. IV-C).
The section concludes with the contour refinement strategy
(Sec. IV-D).

A. Overview

The framework is based on the latent diffusion model [57].
During the training phase, the model learns to predict the
specific noise added at each step of the forward process. In
the inference phase, it initiates with the noise and iteratively
applies the denoising network in the backward process to
generate images with the image decoder. We illustrate the
overview of the framework in Fig. 3.

To ensure the quality, we recruit 10 volunteers to evaluate 1% samples,
with a pass rate over 93%.
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Fig. 3. The framework of the OpenCIR model. (a) The process starts with encoding the original image into the latent code. In the forward process, Gaussian
noise is added selectively to repainted regions. The latent code is further concatenated with the geometry condition. (b) The input combination is fed into the
denoising network equipped with texture/color injection modules. The denoising process includes 71" iterations. (c) With the estimated fine-grained geometry
condition, the denoised latent code is mixed with background regions. Finally, an image decoder maps the mixed code into the repainted result. (d-e) By
training specific parameters according to the sequence number, OpenCIR could effectively decouple the color and texture properties of the editing goals, and

further support open condition modalities.

Input composition. We use a pre-trained image encoder &
to encode the original image I'™ into the latent code as
2o = E(I'™). After applying the forward process, we further
combine the noised latent code z; with the downsampled
geometry condition z# as the input of the denoising network.
Forward process. Given the special property of the forward
process in diffusion models [24], [60], the noised latent code
z: could be expressed as a linear mix of the latent code zg
and a noise variable e:

2t = Jagzo + V1 — aue, (1)

where € ~ N(0, 1) is Gaussian noise, and « is the parameter
for controlling noise levels, and ¢t € {1,..., T} is the timestep.
We only add noise selectively to the latent code in repainted
regions, allowing the use of the clean background and user-
provided conditions to repaint the specific instance:

2=z 0% 4+ 20 © (1 — 18), 2)

where the downsampled geometry condition #8 € RM*¥ is
a binary mask indicating where the repainted instance places,
and h and © are the mask sizes.

Denoising network. Our denoising network is based on the
U-Net architecture [58], equipped with texture and color
injection modules. The texture injection module is used in each
downsampling block, which enables the model to determine
what to repaint. The color injection module is applied in all
blocks to guide our OpenCIR in accurately presenting how the
instance appears.

Backward process. Given a combination of conditions 8, z*,
and x¢, our denoising network ¢y iteratively refines the latent
code Z; until it converges:

l—ozt

Zt—1 — 7\/@ (Zt — 71 — dt

69(2tat7xg7xc7xt)) +Ut6a (3)

where &; = HZ:1 «s means the amount of noise and o is the
standard deviation of the noise. After 7" iterations, we obtain
the denoised latent code Z.

Output synthesis. The output of the denoising network in-
cludes the denoised latent code Z; and the estimated fine-
grained geometry condition z9. To handle open geometry
precision, we precisely filter out unnecessary repainted regions
by re-using the Eq. (2), where 2% is replaced by z5. After that,
denoting the filtered result as Z(,, we use a pre-trained image
decoder D to map it back into the pixel space and present the
synthesized image as I°"* = D(Z))).

B. Condition injection modules

We redesign color and texture condition injection modules
with “open” principles, ensuring the CIR model’s compatibil-
ity across diverse and mixed modalities, as shown in Fig. 3 (b).
Texture injection module. With the OpenCIR model, users
could provide texture conditions to describe what to repaint.
To understand distinct drawing styles of texture conditions, we
utilize a stack of convolution layers to extract unified spatial
tensors from the texture condition. After that, to adaptively
preserve the correspondence between texture semantics and
repainted regions, we adopt additional convolution layers to
separately obtain refined texture feature f} corresponding to
i-th downsampling block. We formulate the spatially-adaptive
texture injection module as:

R t f i M t

fi= (14 Conv(f})) @ =—=+ Conv(f), 4

3

where fl and f; represent feature maps after and before
modulating, respectively. ; and o; denote the per-channel the
mean and standard deviation of f;, and ® means the pixel-wise
multiplication.
Color injection module. OpenCIR allows users to provide
color conditions to define the how repainted instances appear.



In contrast to texture conditions that have clear correspon-
dences, the color distribution is inherently ambiguous and
requires estimation. Therefore, we adopt the ViT architec-
ture [14] as the color extractor to encode color conditions.
This consists of six stacked Transformer layers, where each
layer incorporates two layer normalizations, a self-attention
layer, and a feed-forward network, equipped with residual
connections. The color extractor encodes color conditions into
unified color tokens 2¢ € RN N °, where N is the sequence
length and N° is the number of embedding channels. Next,
we introduce the attention-based color injection module as:

-
f; = Softmax (M + W} v, (5)

Where @ and K,V are transformed features from the feature
map f; and the color condition ¢, respectively. N* denotes
the number of embedding channels. A and M are optional cues
and represent pre-defined matrices: A indicates optional cor-
respondences between color conditions and repainted regions
while M means the regions targeted for color injection. Specif-
ically, for conditions that assign colors to specific regions (e.g.,
color patches and color points), we define A € LEXW)xN',
where I € {0,1}. For conditions representing the color of
specific instances (e.g., color histograms), we use M = x&.
For conditions that lack explicit correspondences and describe
the entire image (e.g., reference images and text descriptions),
both M and A are all-zero matrices.

Condition mixture injection. When users provide multiple
color conditions, each color condition is injected as Eq. (5).
Denoting ff ; as the modulated feature map in the i-th block
with the j-th color condition, the multi-modal color conditions
mixture could be formulated as:

. 1 ;
fi= Linear(m Zj ijf,j), (6)
j

where W; is the hyper-parameter to weigh the impact of each
condition. If any color condition is absent, the corresponding
W; is adjusted to zero. Since texture conditions are mostly de-
rived from user drawings, where a consistent style is generally
employed for image repainting and mixing disparate texture
styles offers limited additional benefit, we do not consider
texture condition mixture.

C. Condition extension strategy

In addition to compatible condition injection modules, we
present the corresponding training strategy to effectively de-
couple properties and support open condition modalities. As
shown in Fig. 3 (d-e), our condition extension strategy includes
following three steps.

Base model training. Considering color patches represent
the mean value of each local region and Laplace indicates
the changing trend of the global image, we firstly use these
conditions to train a base model to decouple the color
and texture properties of the editing goals. To preserve the
generative priors of pre-trained models, we only train the
condition injection modules and color/texture extractors, and
freeze remaining parameters of the denoising network (e.g.,
vanilla convolution blocks). For denoising, we employ the

MSE loss to minimize the discrepancy between the learned and
target image distributions for arbitrary denoised latent code,
formulated as:

Lim = Et,zg,ewN(O,l) [H6 - 69(275’ t, a8, x, xt)H?] (7

Color condition extension. We further extend color condition
modalities based on the well-trained base model, presented in
Fig. 3 (d). Specifically, we further fix parameters of the trained
texture extractor to preserve the extracted texture property,
remaining the color property to be represented. Next, we
introduce and train independent color extractors with the same
Transformer architecture for each color condition. During
extension, we drop color conditions with 10% probability,
otherwise randomly select N°¢ € {1, 2,3} modalities as color
conditions for training according to Eq. (7).

Texture condition extension. We extend texture condition
modalities after color conditions, illustrated in Fig. 3 (e).
Specifically, we introduce additional convolution layers to
capture various texture patterns. After that, these patterns are
translated into Laplace’s texture space in a contrastive learning
manner [34]. This alignment process fills missing textures
and removes irrelevant details (e.g., brightness in grayscales).
Next, we fix the parameters of all independent color extractors
to maintain the color representation. We train the remaining
parameters for each texture condition as Eq. (7). This ensures
color conditions correctly match corresponding regions under
the guidance of texture conditions with distinct drawing styles.

D. Contour refinement strategy

Previous CIR models [63], [74]-[76] assume that edited
regions are provided exactly the same as the repainted instance
contour. Towards open geometry precision, we introduce the
contour refinement strategy to the OpenCIR model. As pre-
sented in Fig. 3 (a-c), we adopt additional channels to the
denoising network to integrate downsampled user-provided
geometry conditions % and to estimate the fine-grained in-
stance contour 7& € RH*W With the training process, the
precision of the estimated instance contour improves based
on user-provided conditions. This is because (i) the geometry
condition, despite its open precision, provides the fundamental
instance contour of the expectation; and (ii) the color and tex-
ture conditions inherently contribute to defining the expected
instance contour. We further adopt the Dice loss to identify
the fine-grained repainted regions as:

|Z8 N 28|
Lic=1—-2—7—— 8
dc ‘jg| n |l‘g|7 ( )
where | - | means size of the set and N presents intersection

of two sets. Therefore, OpenCIR could adaptively understand
geometry conditions with open precision. The total loss is a
combination:

Etotal = ﬁdm + )\‘Cdc; (9)

where A = 0.01 is a hyper-parameter.
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V. EXPERIMENT
A. Training details

We initialize the parameters of OpenCIR from SD1.5% and
intend to repaint images with 512 x 512 resolution. The
base model training, color condition extension, and texture
condition extension take approximately 100, 60, and 60 hours
on 4 NVIDIA Tesla V100 graphic cards. We adopt the Adam
optimizer [37] with a learning rate of 5 x 107°. During
inference, we utilize the DDIM sampling strategy [60] with
50 sampling steps.

B. Quantitative evaluation metrics

Four metrics are used to quantitatively evaluate the per-
formance of each method: (i) We use the Fréchet inception
distance (FID) score [22] to measure the distance between the
distribution of repainted results and real images. (ii) We adopt
Structural Similarity Index Measure (SSIM) [72] to evaluate
whether repainted images have corresponding visual structure.
(iii) We show Peak Signal-to-Noise Ratio (PSNR) [31] to
measure the visual perceived quality between repainted regions
and real images. (iv) We calculate CLIP score [56] to evaluate
whether the repainted images are aligned with text descriptions
in the CLIP space.

C. Comparison with state-of-the-art methods

We compare OpenCIR with relevant state-of-the-art image
editing methods, including Stable Diffusion [57], SDXL [55],
SDEdit [50], SmartBrush [81], InstructPix2Pix [3], Control-
Net [84], UniControlNet [87], and T2I-Adapter [52]. Among

Zhttps://huggingface.co/runwayml/stable-diffusion-v1-5

TABLE I
QUANTITATIVE COMPARISON EXPERIMENT RESULTS (WITH SKETCH AND
TEXT DESCRIPTIONS). THROUGHOUT THE PAPER, T (J) MEANS HIGHER
(LOWER) IS BETTER. BEST SCORES ARE HIGHLIGHTED IN BOLD.

Comparison with state-of-the-art methods

Methods \FID J SSIM (%) 1 PSNR 1 CLIP (%) 1 Pref. (%) 1
Stable Diffusion | 3.74 62.79 17.78 91.67 8.24
Stable Diffusion™ | 4.87 61.55 15.75 89.96 6.96
SDXL 8.17 56.67 13.80 86.17 1.88
SDXL* 5.92 57.78 14.50 89.09 5.38
SDEdit 10.06 33.25 14.01 76.63 3.25
SDEdit* 8.72 32.07 13.91 77.63 4.13
SmartBrush* 4.31 62.22 16.90 91.13 7.13
InstructPix2Pix 11.59 45.18 13.37 78.86 3.63
ControlNet 4.19 63.35 16.48 90.98 6.00
ControlNet* 3.80 63.98 16.90 91.69 7.13
UniControlNet 9.04 19.91 9.19 80.67 475
UniControlNet* | 7.94 28.75 10.34 83.31 3.25
T2I-Adapter 12.19 31.07 10.12 71.77 2.50
T2I-Adapter* 13.83 31.86 10.21 77.05 2.88
Ours (OpenCIR) \ 3.37 66.65 18.92 93.13 32.89

these methods, we reimplement and retrain SmartBrush [81]
due to its code and weights being unavailable. As Instruct-
Pix2Pix [3] requires paired training data that our dataset cannot
provide, we only evaluate its pre-trained models. For the
remaining methods, we use the publicly released models and
fine-tune them on our OPEN-CIR dataset to eliminate the bias
brought by differences in training datasets®. During compari-
son, we follow the original configurations of aforementioned
methods. Specifically, Stable Diffusion [57], SDXL [55],

3We mark the fine-tuned method with an asterisk (*).



SDEdit [50], SmartBrush [81], and InstructPix2Pix [3] only
rely on text descriptions, while ControlNet [84], UniControl-
Net [87], and T2I-Adapter [52] utilize a combination of Sketch
and text descriptions. Although our OpenCIR supports the
open condition modalities, we restrict the provided conditions
to Sketch and text descriptions for a fair comparison.
Qualitative comparisons. We only show representative com-
parison methods in Fig. 4 due to space limitations. In Fig. 4,
the first two rows show reconstruction results, and the remain-
ing two rows present editing results. Stable Diffusion [57]
has difficulty in interpreting text descriptions, resulting in
the omission of instances (first row in Fig. 4, the missing
fish). SDXL* [55] faces challenges in synthesizing the struc-
ture of instances according to user-provided Sketch guidance
(second row in Fig. 4, the absence of creases in clothes).
SmartBrush* [81] fails to accurately create the texture of
specific instances (third row in Fig. 4, the text of the brand).
ControlNet* [84] struggles to match the fine-grained details of
instances to the conditions (fourth row in Fig. 4, misaligned
chocolates in count and shape). In contrast, OpenCIR repaints
specific instances with user-provided geometry, texture, and
color conditions.

Quantitative comparisons. We show comprehensive quan-
titative results in Tab. I, where unmasked original images
serve as the ground truth for calculating each metric. OpenCIR
achieves the best score on all quantitative evaluation metrics,
demonstrating its superior performance. Note that SDEdit [50],
InstructPix2Pix [3], UniControlNet [87], and T2I-Adapter [52]
are global image editing approaches, which places them at
a disadvantage for editing specific instance within an image.
The reason all methods report high CLIP scores is due to
text descriptions being annotated by BLIP-2 [42], which selec-
tively filters out descriptions with low CLIP similarity during
the dataset processing phase (condition annotation details in
Sec. III).

User study. In addition to qualitative and quantitative compar-
isons, we further conduct a user study experiment to find out
whether images synthesized by our model are more favored by
human observers compared to other state-of-the-art methods.
We present participants with input conditions, original images,
and candidates images synthesized using comparison methods
and our OpenCIR. Participants are asked to select the most
visually pleasing result according to input conditions. The
experiment is published on Amazon Mechanical Turk (AMT),
where we randomly select 100 samples from the testing set
of the OPEN-CIR dataset. The experiment results are polled
independently by 25 volunteers. As shown in Tab. I, our model
achieves the highest preference score.

D. Comparison with previous CIR models.

Compared to relevant methods, the principal contribution
of the CIR models lies in understanding multi-modal con-
ditions while decoupling low-level image properties. As the
advancement of CIR models, we compare with previous CIR
models that supports interpreting text descriptions (i.e., unified
model [76] and two-phase model [74]). Since previous models
are typically designed to repaint specific instance categories

TABLE II
EVALUATION SCORES ON TWO ADDITIONAL DATASETS, QUANTITATIVELY
COMPARED TO PREVIOUS CIR MODELS.

Caltech UCSD Birds dataset

Methods | FID| SSIM1 PSNR?T CLIP (%) 1
Two-phase model 12.16 61.44 16.56 88.94
Unified model 10.54 62.60 17.77 91.06
OpenCIR (null) 3.78 86.29 23.18 93.13
OpenCIR (Canny) 3.53 88.81 26.15 94.59
COCO-Stuff dataset
Two-phase model 18.37 32.60 12.72 87.79
Unified model 15.27 33.03 13.07 88.55
OpenCIR (null) 4.01 65.31 19.85 93.34
OpenCIR (Canny) 3.74 67.44 21.28 94.19

(e.g., landscape and birds) using limited text descriptions.
This limits their applicability for evaluation on our OPEN-CIR
dataset. To make a fair comparison, we retrain our OpenCIR on
the Caltech UCSD Birds [68] dataset and the COCO-Stuff [4]
dataset. Considering that previous CIR models use the Gaus-
sian noise as the texture condition that lacks content-related
texture prior, we introduce two types of texture conditions to
our OpenCIR when comparison: (i) using “null” as the texture
condition, setting all elements of texture features to zero; (ii)
using Canny [5] as the texture condition. We present the qual-
itative comparison results in Fig. 5, which demonstrates that
OpenCIR achieves the most realistic compositing results, even
without texture guidance. Quantitatively, OpenCIR achieves
the highest scores across all four metrics on both datasets, as
shown in Tab. II. Notably, providing Canny [5] as the texture
condition can lead to further performance gains.

E. Ablation study

We disable several modules to establish four baselines for
studying the impact of the corresponding modules. We also ex-
plore the effects of varying the conditional dropout probability
and the maximum number of selected modalities. Since some
of our ablations aims to evaluate the effectiveness of condition
mixture injection (e.g., W/o CMI), we conduct experiments
using Laplace as the texture condition and randomly select
color conditions for evaluation. In Tab. III, we present the
evaluation scores. In Fig. 6, we show reconstruction results
in the first two rows and editing results in the remaining two
rows for the module disabling ablation.

W/o Condition Extension Strategy (CES). We disable the
condition extension strategy and train all color conditions in a
single phase. As a result, the model cannot decouple color and
texture properties, leading to inadequate representation (first
row in Fig. 6, withered and discolored petals).

W/o Condition Injection Modules (CIM). We discard op-
tional cues in the color injection module and replace texture
injection module with modules in ControlNet [84]. This leads
to suboptimal color and texture representation (second row
in Fig. 6, abrupt color and irregular texture of the knight).
W/o Condition Mixture Injection (CMI). We feed “null”
into the color extractor when a corresponding color condition
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is absent, instead of discarding it by setting the weight to zero.
Consequently, colors of repainted results become inaccurate
(third row in Fig. 6, shifted colors of the wash painting).
W/o Contour Refinement Strategy (CRS). The pivotal
component (Dice loss) is removed from the strategy, designed
to estimate fine-grained instance contour. As a result, the
boundaries between instances and background regions become
jagged (fourth row in Fig. 6, the contour of the teddy bear).
Hyperparameter Sensitivity Analysis. We leverage the
classifier-free guidance [25] with a dropout probability of
10% during the color condition extension, enabling joint
training of unconditional and conditional models. This dropout
probability aligns with the Stable Diffusion [57] and UniCon-
trolNet [87]. Empirically, we adopt the maximum number of
selected modalities MixNum = 3 to achieve optimal condition
mixture performance. To analyze the sensitivity, we conduct
ablation study experiments by adjusting these hyperparam-
eters. As the results shown in Tab. III, model performance
degrades when deviating from the default values.

FE. Effectiveness of decoupling properties

We adopt the condition extension strategy to decouple the
color and texture properties of the repainted instance (details
see Sec. IV-C). We demonstrate the effectiveness of decoupling
properties in following three aspects.

Condition extension. In the process of extending OpenCIR to
support new color/texture conditions, we observe that results of

TABLE III
QUANTITATIVE ABLATION EXPERIMENT RESULTS (WITH LAPLACE AND
RANDOMLY COLOR CONDITIONS).

Module Disabling Ablation

Methods | FID | SSIM (%) +* PSNRT CLIP (%) *
W/o CIM 1.82 71.68 2235 96.27
W/o CMI 1.85 71.29 22.20 96.17
W/o CES 2.31 70.94 2143 95.53
W/o CRS 2.38 71.04 21.26 95.49
Hyperparameter Sensitivity Analysis
Prob = 5% 1.79 71.71 22.34 96.34
Prob = 20% 1.77 71.98 22.36 96.37
MixNum = 2 1.82 71.68 22.30 96.28
MixNum = 4 1.76 71.78 2242 96.40
Ours (OpenCIR) | 1.52 72.47 23.13 96.94

the initial iteration tend to lose the corresponding color/texture
property while preserving the other one. Specifically, as illus-
trated in Fig. 7 (left), the initial iteration of the color condition
extension reveals that OpenCIR preserves the texture structure
but fails to correctly represent colors, leading to colorless
results. In addition, as demonstrated in Fig. 7 (right), the
initial iteration of the texture condition extension presents a
simplistic color distribution that omits instance details. This is
because OpenCIR cannot fully understand the new conditions
in the initial iteration of the condition extension. Meanwhile, it
continues to render the previously mastered the other property.
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Fig. 7. Initial iteration visualization during color and texture condition extension. Left: Color condition extension. Right: Texture condition extension.

This serves as evidence that OpenCIR effectively decouples
the color and texture properties.

Property alignment. We conduct additional experiments to
demonstrate that each condition can exclusively represent the
respective color and texture properties after the condition
extension. As demonstrated in Fig. 8 (top), despite the text de-
scription mentioning the zebra, OpenCIR only applies the rele-
vant black and white colors to the appropriate regions, ignoring
the categorical context. In contrast, alternative methods (i.e.,
ControlNet [84], UniControlNet [87], and T2I-Adapter [52])
render the zebra texture, losing the fidelity to the texture con-
dition. Furthermore, as illustrated in Fig. 8 (bottom), although
grayscale provides luminance that potentially indicates candi-
date colors (e.g., brighter regions implying lighter colors [85]),
OpenCIR correctly repaints instances according to the color
condition (e.g., applying dark colors in bright regions), along
with preserving the texture structure. In this case, traditional
colorization methods (i.e., L-CoDe [79], UniColor [30], and

L-CAD [7]) have difficulty in assigning corresponding colors
according to the user-provided instruction. These examples
demonstrate that the extended conditions are aligned with the
color and texture spaces of the base model.

Condition modality. We further present qualitative results for
repainting the same image under different condition modalities
to explore the effects of the condition modalities. As shown
in Fig. 9 (left), varying drawing styles may influence texture
representation: Sketch-based repainting reveal fewer texture
details, whereas those using Laplace highlight high-frequency
features. As illustrated in Fig. 9 (right), distinct color con-
ditions lead to varied color distributions: text descriptions
provide optional color ranges for corresponding regions, while
color patches explicitly define the average color for each
repainted region. Notably, each condition affects only its
corresponding property (i.e., color or texture), preserving other
aspects of the reconstructed image.
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G. Controllability and Robustness

To demonstrate the fully-functional capabilities of the Open-
CIR, we additionally conduct experiments to demonstrate
its controllability and robustness under various conditions,
including scenarios with conflicting conditions.
Controllability to open conditions. By providing distinct
conditions related to geometry (where), texture (what), and
color (how), we show six typical application scenarios of
Open-CIR in Fig. 10 to repaint open object categories with
open condition modalities and geometry precision: (a-b) For
a given instance, we preserve its color or texture while
modifying the opposite one to manipulate the specific prop-
erty; (c) For multiple instances requiring individual contour
adjustments, we use geometry conditions covering the instance
contours to adjust their boundaries into unique shapes; (d)
For the specific instance, we repaint its appearance using
diverse color and texture conditions along with the same
geometry condition to produce various repainted results; (e)
For candidate instances to be removed, we match the geom-
etry condition to the instance contours to remove individual
instances; (f) In a scene lacking a subject, we introduce various
instances by specifying where to place with the geometry
condition, what the instance is with the texture condition, and
how it appears with the color condition, thereby enriching the
same background with different instances.

Robustness to conflicting conditions. Users may provide
conflicted conditions when repainting images. We demonstrate
OpenCIR’s handling of such scenarios through four examples.
As shown in Fig. 11 (top), although the two conditions
describe different colors, they have different emphases. On
the left, color points primarily focus on boxes, while text
descriptions describe the overall colors. On the right, the color
histogram describes the global color distribution, while text
descriptions assign specific colors to the truck head. As a
result, OpenCIR successfully integrates both. As illustrated
in Fig. 11 (bottom), both color conditions focus on the same
regions. On the left, both reference images and color points
focus on the body of the car. On the right, both color patches
and reference images aim to assign colors to the clothing. As
a result, the repainting results exhibit a subtractive mixture
effect, e.g., mixing purple and green to produce brown. In all
cases, OpenCIR produces visually pleasing results.

H. Limitation

While OpenCIR demonstrates strong capabilities in repaint-
ing photo-realistic images, it still faces challenges in repainting
out-of-distribution images (e.g., cartoons). This is primarily
because these images have distinct condition distributions
(e.g., colors and textures). A promising approach to over-
come this issue involves collecting training samples specific
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Fig. 11. Examples of repainting results with conflict conditions. Top: Conditions with different emphases. Bottom: Conditions focus on same image regions.

to the target domain, followed by fine-tuning the model or
incorporating extra parameters [27]. We plan to explore this
avenue in future work with the goal of improving the model’s
adaptability to a wider range of image domains.

VI. CONCLUSION

In this paper, we present OpenCIR, a fully-functional
CIR model that aims at repainting specified visual content
and then seamlessly compositing them into original images.
OpenCIR utilizes generative priors of pre-trained generative
models, redesigns condition injection modules with “open”
principles, and adopts the condition extension and contour
refinement strategies. These improvements enable OpenCIR to
repaint open object categories with open condition modalities
and geometry precision. For the comprehensive training and
evaluation of OpenCIR, we additionally contribute a large-
scale dataset with diverse and detailed condition annotations.
Extensive experiments demonstrate that OpenCIR outperforms
relevant state-of-the-art image editing methods.
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APPENDIX

A. Task differences

In Tab. S1, we summarize the supported modalities and
functionalities of relevant image editing methods, existing
CIR models, and our approach. v/1Xindicates the model
supports/lacks the specified modality/functionality. We cate-
gorize modalities into three groups: text descriptions (e.g.,
instructions expressed in various languages), visual elements
(e.g., reference images, semantic maps, and other image-like
conditions), and statistical concepts (e.g., attributes, color his-
tograms, and motion points). In addition, model functionalities
are also divided into three categories: local editing (e.g.,
modifying specific regions while preserving remaining regions
entirely unchanged), composable controllability (e.g., utilizing
multiple modalities simultaneously for image editing), and
property decoupling (e.g., modifying specific low-level prop-
erties of the image, such as color, texture, and geometry).
Compared to relevant methods, the principal contribution of
the CIR models lies in understanding multi-modal conditions
while decoupling low-level image properties.

B. Additional qualitative results.

We present additional comparison experiment results with
Stable Diffusion [16], SDXL [15], SDEdit [11], Smart-
Brush [22], InstructPix2Pix [3], ControlNet [25], UniCon-
trolNet [27], and T2I-Adapter [12] on OPEN-CIR dataset in
Fig. S1 and Fig. S2, where we transpose the layout to make the
figure larger. The first four columns show the comprehensive
qualitative comparisons presented in Fig. 4 of the main paper.
The remaining four columns show additional reconstruction
results and editing results. Zoom-in details are additionally
provided in Fig. S3 and Fig. S4.
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TABLE S1
DIFFERENCES BETWEEN CIR MODELS AND RELEVANT METHODS.

Modality group Functionality categories

Method Text Visual Statistical | Local Composable Property
descriptions elements concepts |editing controllability decoupling

RePaint [10] X

DragGAN [13] v

DragDiffusion [17]
PaintByExample [23]
InstructPix2Pix [3]
Pix2PixZero [14]
Imagic [8]

RichText [6]

SDEdit [11]
UniControlNet [27]
T2I-Adapter [12]
SceneComposer [24]
Stable Diffusion [16]
SDXL [16]
SmartBrush [22]
BlendDiffusion [2]
ControlNet [25]
Composer [7]

MISC [21]
UniCoRN [18]
LuminAlIRe [19]
Repainting [20]

N A A S S S E N N N N R et
N R N N N N N N N R R et
L3N] U0%0%0%0% %% % % X NUX X X X

NN NN U0%0% %% %% % %\ %X
NN U XU U% % % % % % X
AN RN NN PR R R R R R R R R R 0 8 SNANR

Ours (OpenCIR) |

In addition, we show more qualitative comparison results
with previous CIR models in Fig. S5, whose details can be
found in Sec V-D of the main paper. More ablation study
results are shown in Fig. S6, whose details are presented in
Sec. V-E of the main paper.

C. Additional comparisons with state-of-the-art methods

We additionally compare OpenCIR with a broader range
of models, including Repaint [10], SD3 [5], SD3.5 [1], and
FLUX [9]. Since the official inpainting pipeline for SD3.5 [1]
is unavailable, we implement it following the approach of
SDXL [15], denoted as SD3.5-Fill. Similarly, we denote the
inpainting pipeline for FLUX [9] as FLUX-Fill. As ControlNet
pipelines for SD3.5 and FLUX do not support the Sketch con-
dition used in Sec. V-C of the main paper, we select the most
similar Canny as the provided condition, denoted as SD3.5-
Canny and Flux-Canny, respectively. During comparison, we
follow the original configurations of the aforementioned meth-
ods when editing images. Specifically, Repaint [10] takes no



TABLE S2
ADDITIONAL QUANTITATIVE COMPARISON EXPERIMENT RESULTS.
THROUGHOUT THE PAPER, 1 () MEANS HIGHER (LOWER) IS BETTER.
BEST SCORES ARE HIGHLIGHTED IN BOLD.

Additioanl comparison with state-of-the-art methods

Methods | FID| SSIM (%) T PSNRT CLIP (%) 1
Repaint 9.18 72.73 17.25 85.39
SD3 3.56 68.34 18.15 92.03
SD3.5-Fill 4.70 73.16 16.82 91.12
FLUX-Fill 2.93 73.64 20.01 93.16
SD3.5-Canny 8.25 32.77 10.87 81.79
FLUX-Canny 10.93 26.54 9.69 74.89
OpenCIR-Canny | 2.11 78.73 19.31 94.67

additional condition for handling open categories; SD3 [5],
SD3.5-Fill [1], and FLUX-Fill [9] use only text descriptions;
and SD3.5-Canny [1] and FLUX-Canny [9] use both Canny
edges and text descriptions.

Qualitative comparisons. As shown in Fig. S7, the first
two rows show reconstruction results, and the remaining two
rows present editing results. Repaint [10] tends to remove the
instance or generate an unknown one (first row in Fig. S7,
the disappearing motorcycle). SD3 [5] struggles to repaint the
instance with the appropriate contour (second row in Fig. S7,
strange house shape). SD3.5-Fill [1] and FLUX-Fill [9] repaint
high-quality instances, but lack structural similarity to the
input texture condition (third row in Fig. S7, the unnatural text
of the brand). SD3.5-Canny [1] and FLUX-Canny [9] repaint
instances based on texture guidance, but significantly modify
the background appearance (fourth row in Fig. S7, the bright
room). Instead, OpenCIR faithfully repaints specific instances
according to the user-provided conditions.

Quantitative comparisons. As comprehensive quantitative
results shown in Tab. S2, OpenCIR achieves the best score
on all quantitative evaluation metrics. Note that SD3.5-Canny
and Flux-Canny are global image editing approaches, which
places them at a disadvantage for editing specific instance
within user-provided images.

D. Architecture of the texture condition injection module

We present the architecture of the texture condition injection
module in Fig. S8 (a). Specifically, it consists of a texture ex-
traction network (Fig. S8 (b)) followed by four stacked texture
injection blocks (Fig. S8 (c)). The extraction network employs
a stack of convolutional layers and SiLU activations [4].
Each injection block contains two Spatially-Adaptive Texture
Injection (SATI) modules (Fig. S8 (d)). As described in Eq. (4)
of the main paper, SATI modules modulate image features
with corresponding texture features and instance masks to
understand distinct drawing styles of texture conditions for
specified regions.

E. Differences with ControlNet

While ControlNet [26] has shown strong performance in
controllable image generation, it primarily adds features from
an additional network branch, which may not effectively

disentangle fine-grained editing objectives (e.g., determining
where to place instances, what those instances are, and how
they should appear) for the condition image repainting task.
To address this limitation, we employ distinct strategies and
tailored injection mechanisms: (i) Training strategy. We
utilize a contour refinement strategy guided by instance masks
to precisely control the placement (where), and a condition
extension strategy to decouple texture (what) and color (how)
properties. (ii) Texture injection. To adaptively integrate di-
verse drawing styles from texture conditions, we inject texture
features via feature modulation, rather than direct feature
addition as commonly used in ControlNet [26]. This allows
for a more nuanced integration suitable for stylistic variations.
(iii) Color injection. To handle potentially ambiguous color
correspondences, our module incorporates explicit instance-
color cues, rather than relying solely on cross attention as
ControlNet [26]. This provides precise instance-specific color
mapping. As a result, our OpenCIR achieves leading perfor-
mance across all four metrics and user study results.

F. Discussion of detail correlation

We observe that OpenCIR tends to correlate user-provided
drawing details with the repainting details. Consequently,
achieving results with high detail may require correspondingly
elaborate hand-drawn texture conditions. A potential approach
is to design a “detail scale factor” and further refine the
training data distribution. This could decouple detail corre-
spondence between user-provided condition and repainted re-
sults, enabling detailed generation even from coarser sketches
and offering users greater flexibility. We plan to explore this
possibility in future work.

G. Dataset sample

As illustrated in Sec. III of the main paper, we collect and
process a large-scale dataset tailored for the comprehensive
training and evaluation of CIR models. To further demonstrate
its diversity of object categories, we show more foreground
examples in Fig. SO.
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Fig. S1. Qualitative comparison with state-of-the-art image editing methods. Top: Original images and conditions related to geometry (where), texture (what),
and color (how). Bottom: Qualitative comparison results.
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Fig. S2. Qualitative comparison with state-of-the-art image editing methods.
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Fig. S3. Zoom-in details of qualitative comparison with state-of-the-art image editing methods. Top: Original images and conditions related to geometry
(where), texture (what), and color (how). Bottom: Qualitative comparison results.
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Fig. S4. Zoom-in details of qualitative comparison with state-of-the-art image editing methods.
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Fig. S5. Qualitative comparison results with previous CIR models. Left: Original images and conditions related to geometry (where), texture (what), and
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Fig. S6. Ablation study with different variants of the proposed method. Left: Original images and conditions related to geometry (where), texture (what),
and color (how). Right: Ablation study results.
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texture (what), and color (how). Right: Qualitative comparison results.
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