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Abstract
Audio is inherently temporal and closely synchronized with the visual world,
making it a naturally aligned and expressive control signal for controllable video
generation (e.g., movies). Beyond control, directly translating audio into video is
essential for understanding and visualizing rich audio narratives (e.g., Podcasts
or historical recordings). However, existing approaches fall short in generating
high-quality videos with precise audio-visual synchronization, especially across
diverse and complex audio types. In this work, we introduce MTV, a versatile
framework for audio-sync video generation. MTV explicitly separates audios
into speech, effects, and music tracks, enabling disentangled control over lip mo-
tion, event timing, and visual mood, respectively—resulting in fine-grained and
semantically aligned video generation. To support the framework, we additionally
present DEMIX, a dataset comprising high-quality cinematic videos and demixed
audio tracks. DEMIX is structured into five overlapped subsets, enabling scal-
able multi-stage training for diverse generation scenarios. Extensive experiments
demonstrate that MTV achieves state-of-the-art performance across six standard
metrics spanning video quality, text-video consistency, and audio-video alignment.
Project page: https://hjzheng.net/projects/MTV/.

1 Introduction

Audio is a fundamental medium in daily life, crucial for both information delivery (e.g., commu-
nication, notifications, and education) and immersive experiences (e.g., enhancing the impact of
film visuals). Despite the prevalence of audio-centric platforms (e.g., Podcasts), content presented
solely through audio lacks the visual dimension needed to fully convey the richness of events. Since
audio is naturally temporal and inherently synchronized with the visual world, researchers [1–3] have
devoted considerable attention to translating audios into corresponding videos to enhance audience
understanding of rich audio narratives (e.g., historical recordings).

Despite great progress, existing methods face practical limitations in generating high-fidelity cine-
matic videos with precise synchronization (e.g., pouring water into the transparent cup), primarily due
to: (i) Under-specified audio-visual mapping. Current approaches handle a wide spectrum of audios
and map them to various target scenes (e.g., landscapes [4], dancing [5], music performances [6]).
This broad representation scope potentially leads to ambiguous mappings lacking specificity between
audio and visual features. (ii) Inaccurate temporal alignment. Existing methods primarily focus on

† Equal contributions. ‡ Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://hjzheng.net/projects/MTV/


… A man in a brown jacket and a blue shirt … talking on a mobile phone …Character-centric narrative

... A male on the left, wearing a black suit ... A woman on the right, wearing a red dress ...Multi-character interaction

… The focus is on the water's movement as it is poured into the glass from above …Sound-triggered events

… A young woman … flowers with purple and yellow … A man dressed in a dark jacket ...Music-shaped ambiance

… An old, rusted car driving on a suburban street ... with a faded white paint job … Camera movement

Figure 1: MTV demonstrates versatile audio-sync video generation capabilities following user-
provided text descriptions specifying scenes and subjects. Capabilities shown include producing
videos centered on targeted characters (1st and 2nd rows) while triggering events with sound effects
(3rd row), generating visual mood with accompanying music (4th row), and adaptively handling
camera movement (5th row). We present these generated videos in the supplementary materials.

building scene-level semantic consistency (e.g., translating engine sound to a car-centered video),
struggling with accurate timing correspondence between individual audio events and their visual
features (e.g., speech [7], motion [8], and visual mood [9]).

In this paper, we propose the MTV framework, enabling Multi-stream Temporal control for audio-
sync Video generation to overcome aforementioned issues, with versatile capabilities across scenarios
illustrated in Fig. 1. Instead of attempting a direct mapping from composite audios, we explicitly
separate audios into distinct controlling tracks (i.e., speech, effects, and music), inspired by CDX’231.
To provide sufficient high-quality video clips with demixed audio tracks, we contribute a large-scale
DEMIX dataset with tailored data processing, including 392K video clips with 1.2K hours. These
tracks enable the model to precisely control lip motion, event timing, and visual mood, resolving
the ambiguous mapping. To further incorporate rich visual semantics beyond direct audio cues,
we leverage features (e.g., subject gesture, scene appearance, camera movement) initially derived
from a pretrained text-to-video model [10], and subsequently finetuned using video clips from the
DEMIX dataset. To enable the progressive extension of learned high-level video semantic features
stage-by-stage, this dataset is structured into five overlapped subsets. A multi-stage training strategy
is introduced to learn concrete and localized controls (e.g., lip motion) towards more abstract and
global influences (e.g., visual mood), leading to clear audio-visual relationships.

1https://www.aicrowd.com/challenges/sound-demixing-challenge-2023
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To achieve accurate temporal alignment, we propose the Multi-Stream Temporal ControlNet (MST-
ControlNet) within the MTV framework. The interval stream is designed for specific feature
synchronization, which extracts features from the speech and effects tracks. It employs interval
interaction blocks to understand each track individually and construct their interplay, maintaining
the coherence with inferred semantic features. After that, interval feature injection module inserts
features of each track into corresponding time intervals to drive lip motion and event timing. Since
visual mood typically covers the entire video clip, the holistic stream is designed for overall aesthetic
presentation, which extracts features from the music track using the holistic context encoder. These
features then serve as style embeddings, applied uniformly to all frames through global style injection,
controlling the visual mood.

We summarize our contributions as follows:

• We present MTV, a versatile audio-sync video generation framework by demixing audio
inputs, achieving precise audio-visual mapping and accurate temporal alignment.

• We introduce an audio-sync video generation dataset structured into five overlapped subsets,
presenting the multi-stage training strategy for learning audio-visual relationships.

• We propose the multi-stream temporal ControlNet to distinctively process demixed audio
tracks and precisely control lip motion, event timing, and visual mood, respectively.

2 Related Works

2.1 Video Diffusion Model

The field of video generation has made significant progress with the adoption of diffusion models.
Early approaches [11–13] extend the dynamic modeling capabilities of pretrained text-to-image
diffusion models [14] by incorporating temporal layers (e.g., 3D convolutions [15] and temporal
attention [16]). However, these methods face inherent challenges in capturing long-range spatial-
temporal dependencies due to the convolutional architectures of their backbone (e.g., UNet [17]).
To overcome this limitation, Sora report [18] presents the potential of the diffusion transformer
(DiT) [19] architecture, prompting a shift towards integrating 3D VAE [20] for spatial-temporal
compression and scaling up to train the entire DiT-based model. Further improvement has been
achieved by recent foundation models through adaptive layernorm modules [10], progressive scaling
[21, 22], and post-training techniques [23]. These advancements in text-to-video models provide
a strong foundation and powerful generative priors that could potentially be leveraged for related
cross-modal tasks, such as high-quality audio-sync video generation.

2.2 Audio-driven Image Animation

Audio-driven image animation aims to generate dynamic visuals from a static image, synchronized
with user-provided audios. Several previous works animate general objects or scenes while maintain-
ing audio-visual consistency. Sound2Sight [24] and CCVS [25] leverage the context of preceding
frames to achieve audio-driven subsequent frames generation. TPOS [26] uses audios with variable
temporal semantics and amplitude to guide the denoising process. ASVA [27] incorporates a temporal
audio control module for effective audio synchronization. Other works concentrate on audio-driven
human animation. Talking head [7, 28–30] focus on animating human face images to produce lip
motion that synchronize with the speech. Recent works extend animation beyond the head to include
half-body movements [31] and introduce pose control for full-body animation [32]. Another specific
application is music-to-dance [33, 34], which generates human dance according to the beat of the
music. Despite the audio-visual synchronization of these methods, their reliance on static images
restricts models’ capability to generate dynamic scenes required for cinematic videos.

2.3 Audio-sync Video Generation

Audio-sync video generation does not require additional images for reference, offering the potential
for free scene creation. Early works are designed based on VQGAN [35] and StyleGAN [36], achiev-
ing audio control through multi-modal autoregressive transformers [2] and style code alignment
[4, 37]. Recently, following the success of diffusion models demonstrating effectiveness in general
video generation, researchers have turned their attention. Highlighting the benefit of multi-modal
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Table 1: Comparison of DEMIX dataset and previous datasets.

Method Year Modality Scene Audio component Specifications

Text Audio People Objects Cinematic Speech Effects Music Demix Clips Hours

UCF-101 [38] 2012 – ✓ ✓ – – – ✓ ✓ – 13K 27
HIMV-200K [39] 2017 – ✓ ✓ ✓ ✓ – – ✓ – 200K –
AudioSet [40] 2017 – ✓ ✓ ✓ – ✓ ✓ ✓ – 2.1M 5.8K
VoxCeleb2 [41] 2018 – ✓ ✓ – – ✓ – – – 150K 2.4K
VGGSound [42] 2020 – ✓ ✓ ✓ – ✓ ✓ ✓ – 200K 550
WebVid-10M [43] 2021 ✓ – ✓ ✓ – – – – – 10.7M 52K
Landscape [4] 2022 – ✓ – ✓ – – ✓ – – 9K 26
InternVid [44] 2024 ✓ ✓ ✓ ✓ – ✓ ✓ ✓ – 7.1M 760K
Ours (DEMIX) 2025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 392K 1.2K

conditions, TA2V [6] demonstrates that conditioning on both text descriptions and audio inputs sig-
nificantly enhances the quality of generated videos. To achieve audio-visual alignment at both global
and temporal levels, TempoTokens [1] designs a lightweight adapter for text-to-video generation
model. Introducing a unified diffusion architecture, MM-Diffusion [5] enables both joint audio-video
generation and zero-shot audio-sync video generation. Leveraging diffusion-based latent aligners for
open-domain audio-visual generation, Xing et al.[3] achieve the audio-sync video editing and open-
domain content creation. Although great progress has been made, audio-sync video generation still
faces under-specific audio-visual mapping and inaccurate temporal alignment. Therefore, achieving
cinematic quality remains challenging.

3 Dataset

We introduce the DEMIX dataset, tailored for training demixed audio-sync video generation models.

Data source. The training data is sourced from three aspects: (i) 65 hours of talking head videos
from CelebV-HQ [45]; (ii) 4,923 hours of cinematic videos from MovieBench [46] (69h), Condensed
Movies [47] (1,270h), and Short-Films 20K [48] (3,584h); and (iii) 8,903 hours film-related videos
from YouTube. All collected videos include their accompanying audio tracks.

Video filtering. Following previous video generation models [10, 12, 49], we use PySceneDetect [50]
to segment video into single-shot clips. Audiobox-aesthetics [51] is further used to assess the quality
of accompanying audio, removing clips with low scores. For the left video clips, we annotate each
one with text descriptions using LLaVA-Video [52].

Demixing filtering. To improve audio demixing reliability, we employ a dual-demixing comparison
strategy, comparing demixing outputs from MVSEP [53] (speech, effects, music) and Spleeter [54]
(speech, others). After that, we calculate the L1 distance between the speech tracks. Next, the
‘others’ track from Spleeter is conditionally compared: to the effects track from MVSEP if music is
silent (below -45dB), and to the music track if effects are silent. Clips are discarded only if high L1
distances are found on any of the comparable pairs.

Voice-over filtering. To build clear audio-visual relationships for cinematic videos, we first detect
whether people are present in the videos using YOLO [55]. Next, we perform speaker diarization for
the accompanying audio using Scribe [56] to identify active speaker segments and count the number
of speakers. After that, we detect the active speaker from videos for each frame using TalkNet [57].
As a result, we can discard clips where speech occurs in the audio but the video analysis detects
neither a visible person nor an active speaker in the corresponding frames.

Subset division. To facilitate multi-stage training for versatile audio-sync video generation models,
the filtered DEMIX data is structured into five overlapped subsets. The basic face subset comprises
all talking head videos. The remaining cinematic and film-related videos are then categorized to form
the other subsets: assignment to single character or multiple characters depends on the annotated
human count, while assignment to sound event or visual mood occurs if the respective effects or
music track is non-silent.

Data statistics. After data collection and filtering, our DEMIX dataset includes 18K basic face, 54K
single character, 39K multiple characters, 166K sound event, and 195K visual mood data, tailored for
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wearing a casual plaid shirt. 
Person2 is speaking.
Scene Description: Two men
are in a serious conversation. 
Person1 is listening to Person2.
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Figure 2: The pipeline of our MTV framework. (a-c) MTV is built on a pretrained text-to-video
model [10] that provides strong generative priors for synthesizing diverse visual scenarios. (d)
Explicitly separated audio tracks (i.e., speech, effects, music) are fed into our proposed multi-stream
temporal ControlNet to ensure synchronization for lip motion, event timing, and visual mood. (e)
The MTV framework is trained on our contributed DEMIX dataset with five overlapped subsets and
tailored text structures, enabling a multi-stage training strategy for audio-sync video generation.

cinematic videos, totaling non-overlapped 392K clips with 1.2K hours, accompanied by demixed
audio tracks2. For comprehensive evaluation, we hold out 1K video clips from the dataset to form
the testing set. We provide an additional comparison with existing audio-related datasets [4, 38–44]
in Tab. 1, highlighting that ours is tailored for versatile audio-sync video generation using demixed
audio tracks, while robustly covering scenarios with people, objects, and cinematic visuals.

4 Method

This section begins with an overview of our MTV framework for audio-sync video generation
(Sec. 4.1). Next, we detail the Multi-stream Temporal ControlNet (MST-ControlNet), including
the interval stream for specific feature synchronization, and the holistic stream for overall aesthetic
presentation (Sec. 4.2). Finally, we present the multi-stage training strategy for effectively learning
audio-visual relationships (Sec. 4.3).

4.1 Overview

MTV generates audio-sync videos based on user-provided text descriptions y (specifying the scenes
and subjects) and demixed audio tracks a = {as, ae, am} (representing speech, effects, and music) to
respectively drive the lip motion, event timing, and visual mood. The pipeline is illustrated in Fig. 2.

Video compression. As presented in Fig. 2 (a), MTV is equipped with a pretrained spatio-temporal
variational autoencoder (VAE) encoder E to map video clips x into latent code z0 = E(x). After that,
its corresponding VAE decoder D is used to reconstruct video clips from the latent code x = D(z0).

Denoising network. As presented in Fig. 2 (b), we concatenate the text embeddings fy and noised
latent code zt before feeding them into the network to ensure the video-text correspondence. The
expert Adaptive LayerNorm (AdaLN) [10] then independently processes text and video features within
this unified sequence. Next, 3D full-attention is used to interact semantics of text embeddings with
corresponding video features. After being extracted by MST-ControlNet, audio cues are integrated
via the interval feature injection and holistic style injection mechanisms. Finally, a feed-forward
network (FFN) is used to refine the resulting video features.

Denoising process. As presented in Fig. 2 (c), MTV finally generates audio-sync videos by iteratively
denoising latent codes. During training, at each time step t ∈ {0, . . . , T}, Gaussian noise ϵt ∼

2Dataset samples are visualized in the supplementary materials.
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N (0, 1) is added to the clean latent code z0 to produce a noised latent code zt =
√
ᾱtz0+

√
1− ᾱtϵt.

A diffusion transformer ϵθ is trained to predict the noise ϵt, given the noised latent code zt, demixed
audio tracks a, denoising time step t, and text descriptions y. The diffusion transformer is trained by
minimizing the loss:

Ldm = Et,z0,ϵt∼N (0,1)

[
∥ϵt − ϵθ(zt, a, t, y)∥2

]
. (1)

For inference, we iteratively denoise a randomly sampled noise zT ∼ N (0, 1) to obtain the latent
code z′0 to generate video clips with the VAE decoder x′ = D(z′0).

4.2 Multi-stream Temporal ControlNet

After explicitly separating audios into speech, effects, and music tracks, we propose the MST-
ControlNet to achieve accurate temporal alignment by respectively controlling lip motion, event
timing, and visual mood. As presented in Fig. 2 (d), the architecture consists of an audio encoding
module followed by two specialized streams.

Audio encoding. Given demixed audio tracks a = {as, ae, am}, we initially extract their correspond-
ing features {f s, f e, fm} from the demixed tracks using wav2vec [58]. After that, speech and effect
features are fed into the interval stream for specific feature synchronization. Instead, music features
are fed into the holistic stream for overall aesthetic presentation.

Interval stream. We design the interval stream to interval-wise control the lip motion and event
timing. Specifically, we separately process speech features f s and effect features f e with a stack of
linear layers and concatenate them before feeding them into N interval interaction blocks. Within
each block, these features are processed independently (via AdaLN, Gate, and FFN) to refine per-track
understanding. To model their interplay at each time interval i, the corresponding speech features f s

i

and effects features f e
i are jointly processed by a self-attention [f̃ s

i , f̃
e
i ] = SelfAttn([f s

i , f
e
i ]). This

interaction also maintains the coherence with inferred semantic features. Finally, interacted speech
features f̃ s and effects features f̃ e are integrated into their corresponding time intervals via the
interval feature injection mechanism:

hs
i = CrossAttn(hi, f̃

s
i ), he

i = CrossAttn(hi, f̃
e
i ), (2)

where hi represents the video latent code at i-th interval. CrossAttn(·, ·) means a cross-attention,
where the latent code serves as the query and the audio features as the key and value. Let M be the
number of intervals, the resulting latent code is then updated as h′ = {hs

i + he
i}Mi=1.

Holistic stream. The holistic stream is designed to control the visual mood for the entire video clip.
Specifically, we process the music features fm through a holistic context encoder, comprising three
linear layers and a 1D convolutional layer to extract features representing the visual mood. Since
the environmental ambiance typically covers the entire video clip, an average pooling is applied
to merge all the intervals and transform them into holistic music features f̃m. Next, these features
are regarded as style embeddings. By independently transforming these features into scale factor
γm = Linear(f̃m) and shift factor βm = Linear(f̃m), we modulate the video latent code h′ uniformly
across all intervals via the holistic style injection:

hm = h′ ⊙ (γm + 1) + βm, (3)

where hm is the modulated latent code, fed into the denoising network to refine video features.

4.3 Multi-stage training strategy

As the dataset is structured as five overlapped subsets, we introduce the multi-stage training strategy
to progressively scale up the model stage-by-stage.

Text structure. As presented in Fig. 2 (e), we create a template to structure text descriptions, enabling
our MTV framework to be compatible with these distinct training subsets. Specifically, this template
begins with a sentence indicating the number of participants (e.g., “Two person conversation”), based
on Scribe [56] speaker counts. It then consists of subsequent entries for each individual, starting
with a unique identifier (e.g., Person1, Person2) followed by their respective appearance description.
Following these individual entries, an explicit identifier for the currently active speaker is specified.
Finally, a sentence provides an overall description of the scene. Notably, when there is no active
speaker in the video, only the overall description will be provided.
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Table 2: Quantitative experiment results of comparison and ablation. ↑ (↓) means higher (lower) is
better. Throughout the paper, best performances are highlighted in bold.

Method FVD ↓ Temp-C (%) ↑ Text-C (%) ↑ Audio-C (%) ↑ Sync-C ↑ Sync-D ↓
Comparison with state-of-the-art methods

MM-Diffusion [5] 879.77 94.15 15.61 5.43 1.53 11.21
TempoTokens [1] 795.88 93.13 24.68 6.71 1.45 10.48
Xing et al. [3] 805.23 93.30 24.51 7.30 1.55 10.50
Ours (MTV) 626.06 95.40 26.55 26.22 3.17 9.43

Ablation study

W/o SE 667.81 95.30 26.49 24.68 2.46 9.55
W/o SI 626.46 94.84 25.50 19.64 2.53 9.76
W/o TB 698.36 95.14 26.37 24.50 2.31 9.78

Training schedule. We train the model from concrete and localized controls towards more abstract
and global influences. Initially, we train the model to learn lip motion using the basic face subset. It
then learns human pose, scene appearance, and camera movement on the single character subset. To
handle scenarios with multiple speakers, we subsequently train the model on the multiple characters
subset. Following this, our training focus shifts to event timing and extending subject understanding
from humans to objects using the sound event subset. Finally, we train the model on the environmental
ambiance subset to improve its representation of visual mood.

Training details. We initialize our spatial-temporal VAE and DiT backbone with pretrained weights
from CogVideoX [10] and train our model to generate audio-sync videos at a 480× 720 resolution.
For each stage, we train our model for 40K steps on 24 NVIDIA A800 GPUs using the Adam-based
optimizer [59] with a learning rate of 1× 10−5, where MST-ControlNet and attention layers of the
backbone are trainable. For inference, our model requires 280s to generate a 49-frame audio-sync
video on a NVIDIA A100 GPU.

5 Experiments

5.1 Comparison with state-of-the-art methods

As audio-sync video generation is an emerging task, the relevant comparison methods are still
developing. We compare our method with three recent state-of-the-art approaches in our DEMIX
dataset. For TempoTokens [1] and Xing et al. [3], we evaluate them using both text descriptions
and corresponding audios as their original configuration. Since MM-Diffusion [5] can only support
audio inputs and its training focuses on specific landscape and dancing, we finetune it to ensure a fair
comparison. 50 videos are randomly selected from the testing set for evaluation.

Quantitative comparisons. As presented in Tab. 2, we quantitatively evaluate performance across
three main aspects: (i) Visual quality is assessed using Frechét Video Distance (FVD) [60]. (ii)
Temporal consistency (Temp-C) is measured by calculating similarity between consecutive frames
using CLIP [61]. (iii) We examine text-video alignment via Text Consistency (Text-C) [62], audio-
video alignment using Audio Consistency (Audio-C) [63], and specifically lip motion synchronization
with Sync-C and Sync-D [64]. As a result, our framework outperforms state-of-the-art methods
across all six quantitative metrics. These metric details are provided in the supplementary materials.

Qualitative comparisons. As presented in Fig. 3, qualitative comparisons with state-of-the-art
methods [1, 3, 5] highlight the advantages of our framework. For instance, even after finetuning
MM-Diffusion [5] for over 320K steps using the official code on 8 NVIDIA A100 GPUs, it still
struggles with generating cinematic videos. TempoTokens [1] struggles to generate cinematic videos
for complex text-specified scenarios, resulting in unrealistic human expressions (Fig. 3 left). Xing et
al. [3] find it difficult to effectively achieve audio synchronization for specific event timing, leading
to incorrect rendering of human gestures for guitar performance (Fig. 3 right). In contrast, our MTV
framework faithfully generates audio-sync videos with cinematic quality.
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Figure 3: Visual comparison results with state-of-the-art methods for audio-sync video generation.
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Figure 4: Ablation study results of different MST-ControlNet variants.

5.2 Ablation Study

To evaluate the effectiveness of key components within MST-ControlNet, we conduct ablation studies
against three baseline configurations, as shown in Fig. 4 and Tab. 2.

W/o SE (Separate Extraction). We extract all features from demixed audio tracks using interval
interaction blocks. This prevents music features from shaping the overall aesthetic presentation,
leading to reduced visual mood (Fig. 4 left, degraded FVD and Temp-C).

W/o SI (Separate Injection). We extract features from demixed audio tracks by their respective
encoders. These features are then concatenated and injected into the denoising network via a shared
cross-attention. This reduces conditional consistency (Fig. 4 left, decreased Text-C and Audio-C).

W/o TB (Training Backbone). We freeze all weights of DiT backbone and only train our proposed
MST-ControlNet to preserve more generative priors. This impairs the specific feature synchronization,
especially the lip motion synchronization (Fig. 4 right, reduced Sync-C and Sync-D).
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Table 3: User study results. Ours (MTV) clearly produces a higher score than state-of-the-art methods.

Subjective criteria MM-Diffusion [5] TempoTokens [1] Xing et al. [3] Ours (MTV)

Semantic consistency 0.96% 13.60% 11.28% 74.16%
Motion fluency 0.64% 8.96% 12.56% 77.84%
Overall preference 0.72% 12.00% 12.40% 74.88%

Table 4: Quantitative experiment results with alternative pre-trained components.

Method FVD ↓ Temp-C (%) ↑ Text-C (%) ↑ Audio-C (%) ↑ Sync-C ↑ Sync-D ↓
CogVideoX+Wav2Vec 626.06 95.40 26.55 26.22 3.17 9.43
CogVideoX+Beats 598.53 95.91 26.25 25.28 3.02 9.52
Wan14B+Wav2Vec 353.61 96.36 27.23 26.49 3.08 9.56

5.3 User Study

To better evaluate our method from a human perception perspective, we conduct three subjective
user study experiments in Tab. 3. We present videos generated by our method and all baselines
to participants and ask them to choose the best one based on the following criteria: (i) Semantic
consistency. How well the video content aligns with the text description. (ii) Motion fluency. The
realism and temporal coherence of the motion. (iii) Overall preference. How good the holistic
quality of the video is. For each study, we randomly select 50 text descriptions from the test set, and
the evaluations are conducted by 25 volunteers. The table below shows the percentage of times each
method is chosen as the winner. Our method is consistently favored by human observers and has
achieved the highest scores across all three subjective criteria.

5.4 Analysis of Pre-trained Components

We evaluate the robustness of our proposed method by integrating it with alternative pre-trained
components. Specifically, we test replacing the audio encoder (Wav2Vec/BEATs) and the video
backbone (CogVideoX/Wan14B) in Tab. 4.

BEATs. Since Wav2Vec [58] is a common setting for speech encoding (e.g., Hallo3 [7]), this baseline
only replaces it with BEATs [65] for both the effects and music tracks. As shown in Tab. 4, this
baseline achieves comparable (or slightly better) video-related metrics (i.e., FVD and Temp-C) but
shows a slight degradation on audio-related metrics (i.e., Audio-C, Sync-C, and Sync-D), suggesting
that our current choice of Wav2Vec [58] is a robust and effective one for this task.

Wan14B. Since Wan14B [21] shares a similar DiT-based structure with CogVideoX [10], we can
integrate our proposed MST-ControlNet into it without architectural changes. Specifically, our
interval feature injection and holistic style injection modules are added after each text cross-attention
layer. The quantitative results below show this baseline achieves better performance on video-
and text-related metrics (i.e., FVD, Temp-C, and Text-C) due to the stronger capabilities of the
Wan14B [21], while achieving comparable performance on all audio-related metrics (i.e., Audio-C,
Sync-C, and Sync-D).

5.5 Application

As presented in Fig. 5, our model support four typical scenarios: (i) By integrating text-to-video
generative priors and learned audio-visual synchronized capabilities, our model can create vivid
virtual characters. (ii) Given user-provided images and taking them as arbitrary keyframes, our model
can drive the image according to the given audios. (iii) Although our model generates video segments
of 49 frames, it can achieve long video generation by using the generated frame to initialize the
next segment. (iv) Following training-free approaches [66], our model can generate scene transitions
guided by providing time-varying text descriptions.
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Scene transitions … A dark knight rides the majestic black horse at a steady gallop across a vast grassland/snow-covered field…

Long video generation … A woman with shoulder-length dark hair, wearing a light-colored blazer over a dark top … a vase with flowers …

Character creation … Wolf wearing sunglasses and owl wearing suit … Keyframe guidance … A woman … a red dress with white fur …

Figure 5: Examples of versatile application scenarios for our proposed MTV framework.
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Figure 6: Examples of controllability study for text descriptions and demixed audios.

5.6 Controllability

As shown in Fig. 6, leveraging control from both text descriptions and the three demixed audio
tracks (i.e., speech, effects, music), our model can offer controllability across following four key
aspects: (i) Modifying the text descriptions while keeping all audio tracks fixed allows the visual
scene appearance to be edited without affecting the audio synchronization. (ii) Given a demixed
speech track, the model enables precise control over the synchronized lip motion of the generated
character. (iii) Similarly, with a demixed effects track, the model accurately synchronizes event
timing with the sound effects. (iv) By changing the demixed music track, the model creates different
visual moods for the generated video.

6 Conclusion

In this work, we presented MTV, a versatile framework for audio-sync video generation. MTV
leverages generative priors from pretrained text-to-video models [10] and is trained on our contributed
DEMIX dataset that provides sufficient cinematic videos with demixed audio tracks. Equipped
with our proposed MST-ControlNet, MTV is able to independently control lip motion, event timing,
and visual mood. Combined with a multi-stage training strategy for effective learning of complex
audio-visual relationships, MTV achieves state-of-the-art performance across six evaluation metrics.

Limitation. Although our approach demonstrates the potential of using demixed audio tracks for
precise video control, it is fundamentally limited by the scope of categories provided by upstream
audio demixing techniques [53, 54]. We believe the capabilities of audio-sync video generation
methods will further progress with advancements in audio demixing methods.

Acknowledgement. This work is supported by National Natural Science Foundation of China (Grant
No. 62136001). We thank all the insightful reviewers for the helpful suggestions, and the colleagues
at Beijing Academy of Artificial Intelligence for their support throughout this project.
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7 Appendix

7.1 Task Differences

To further present the advantages of our MTV framework, we clarify the distinctions between our
approach and other audio-relevant tasks. We discuss relevant methods published before the date of
this paper submission (May 15th, 2025).

7.1.1 Audible Video Generation

Audio-sync video generation. Our method belongs to the topic of audio-sync video generation,
which receives user-provided audios as inputs, offering the potential for free scene creation with
optional text descriptions. With the recent advancements in video models, our comparisons focus on
very recent methods (e.g., TempoTokens [1] and Xing et al. [3]). Since TATS [2] does not provide
the custom audio processing, and other methods [5, 6] are tailored for specific visual categories (e.g.,
landscapes), we select the one with the higher citations [5] for finetuning to general scenarios. Among
these, our method is the first to leverage demixed audio tracks for multi-stream control, achieving
state-of-the-art performance across six metrics.

Video-audio joint generation. Different from our audio-sync video generation, video-audio joint
generation task aims to generate videos with accompanying audios based on user-provided instruc-
tions, where most methods in this area are proposed recently [3, 5, 67–69]. Since the audio is
co-generated with the video from a shared input (e.g., text descriptions) that typically lacks explicit
temporal control signals, users typically have limited direct control over the precise event timing
within the generated video. While MM-Diffusion [5] discusses training-free strategies to adapt such
joint generation methods for audio-sync video generation, our comparison results in Sec. 5.1 indicate
that this adaptation approach still has room for improvement.

Summary. Both video-audio joint generation and audio-sync video generation belong to the audible
video generation task. Although video-audio joint generation offers advantages in directly producing
audible videos, audio itself is inherently temporal and closely synchronized with the visual world,
making it an ideal control signal for precise temporal guidance. This makes it highly suitable for
controllable video generation, unlocking potential applications (e.g., bringing historical recordings to
visual life and creating rich visual narratives for podcasts).

7.1.2 Audible Image Animation

Audio-driven image animation. Audio-driven image animation aims to generate dynamic visuals
from a static image, synchronized with user-provided audios. Most of these methods [4, 24–27]
handle general objects and scenarios but still struggle with specific feature synchronization (e.g., for
speech and events). Animating talking humans is another sub-topic, which requires a human image
to be driven mainly by speech. While most methods in this area [70, 28–30] only focus on the head
and facial expressions, a few recent methods [31, 32] extend to half-body or full-body generation.
Compared to audio-sync video generation, while the reference image required by these methods
allows for animating pre-defined subjects, this reliance may also limit the creation freedom for diverse
and dynamic video generation.

Discussion with talking human methods. Since code for both CyberHost [31] and OminiHuman-
1 [32] is unavailable, we additionally compare our method with SadTalker [71] and Hallo3 [7].
Since both SadTalker [71] and Hallo3 [7] can only animate the frontal face of a single person, it is
infeasible to make a comprehensive evaluation even on our single character subset (as videos for
single character also contain many frames without a clear frontal face). Consequently, we provide
qualitative comparisons in Fig. 7. These results show that our method effectively demonstrates
realistic human gestures and reasonable camera movement. In contrast, Hallo3 [7] presents a more
static video (e.g., less gesture and stable background), while SadTalker [71] only modifies the face
and pastes the remaining regions directly from the source image. Notably, since both SadTalker [71]
and Hallo3 [7] require an additional reference image, we take the reference image as the first frame
to leverage our model’s keyframe guidance capability for a fair comparison.
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… A man … wearing a dark hat and a greenish-brown coat … … A woman standing in an office environment … wearing glasses …

Figure 7: Visual comparison results with state-of-the-art methods for talking human.

7.2 Analysis of MST-ControlNet Depth

As presented in Sec. 4.2, we feed features into N interval interaction blocks within the MST-
ControlNet for the interval-wise control. To investigate the impact of this hyperparameter N , we
evaluate variants with different depths. The quantitative results presented in Tab. 5 show that
increasing N consistently improves the overall visual quality (FVD) and temporal consistency (Temp-
C). However, lip motion synchronization metrics demonstrate that they are improved until N = 4
before declining. Text-video (Text-C) and audio-video (Audio-C) consistency remain largely stable
across different values of N . This suggests a potential trade-off between general video quality and
specific lip motion synchronization when varying the depth of interval interaction blocks. Considering
this trade-off, we choose N = 4 as the setting for our main reported results.

Table 5: Quantitative experiment results of comparison and ablation. ↑ (↓) means higher (lower) is
better. Throughout the paper, best performances are highlighted in bold.

Method FVD ↓ Temp-C (%) ↑ Text-C (%) ↑ Audio-C (%) ↑ Sync-C ↑ Sync-D ↓
N = 1 677.51 94.94 26.49 26.32 2.85 9.47
N = 4 626.06 95.40 26.55 26.22 3.17 9.43
N = 8 570.62 96.09 26.46 26.26 2.74 9.55
N = 16 485.84 97.02 26.44 26.25 2.42 9.45

7.3 Metrics Details

As described in Sec. 5.1, we adopt six metrics to quantitatively evaluate performance. We present
their details below: (i) Frechét Video Distance (FVD) [60] is used to assess the video quality by
computing the distance between feature distributions from real videos and generated videos. (ii) The
Temporal consistency (Temp-C) is measured by calculating the cosine similarity between consecutive
frame embeddings from the CLIP image encoder [61]. (iii) Text consistency (Text-C) is evaluated
by cosine similarity between text descriptions and generated videos using VideoCLIP-XL [62]. (iv)
Audio consistency (Audio-C) is evaluated by cosine similarity between input audios and generated
videos using ImageBind [63]. (v) Sync-C and Sync-D [64] are common metrics used to evaluate lip
motion synchronization.

Notably, AV-Align [1] is another potential metric for evaluating audio-video alignment. This metric
detects energy peaks in audio [72] and motion peaks in video [73], respectively. It then validates
whether a peak detected in one modality is also detected in the other within a three-frame temporal
window, and vice versa. Although this metric is intuitive and reasonable, it seems unsuitable for
evaluating the cinematic videos that our MTV framework focuses on. As shown in Tab. 6, real videos
unexpectedly achieve the lowest score with this metric. As a result, we only report this metric in the
supplementary materials.
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Table 6: AV-Align scores for comparison methods. The higher scores are considered better in theory.

Method MM-Diffusion [5] TempoTokens [1] Xing et al. [3] Ours (MTV) Real videos

AV-Align (%) 33.60 33.66 32.49 25.21 23.19

7.4 Dataset Details

Our dataset processing pipeline is illustrated in Fig. 8, with full processing details provided in Sec. 3
of the main paper. Additional dataset samples from our five subsets (i.e., basic face, single character,
multiple characters, sound event, and visual mood) are provided in an anonymous GitHub link 3. Each
sample includes a video with its corresponding demixed audio tracks, serving to clearly illustrate the
concept of ‘audio demixing’.

Video filtering

PySceneDetect

Film 
database

Single-shot 
clips

Audiobox
aesthetics

Demixing filtering

MVSEP

Spleeter

speech effect music

speech others

L1 
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music

effect

speech
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Person
detection

Scribe

Speaker 
diarization

Active speaker
detection

LLaVA-Video

Text description annotation 
Two person conversation.
Person1: A man, positioned to the left …
Person2: woman on the right with brown hair …
Person1 is speaking.
Scene Description: Person1 is actively speaking ...

TalkNet

Figure 8: Dataset processing pipeline for our DEMIX dataset.

7.5 Evaluation on Additional Datasets

To demonstrate the generalization capabilities of our MTV framework, we follow TempoTokens [1]
to conduct additional experiments on both the Landscape [74] and AudioSet-Drum [75] datasets. To
make a fair comparison, we fine-tune all baseline methods (MM-Diffusion [5], TempoTokens [1],
and Xinget al. [3]) on our DEMIX dataset using their official training schedules, and evaluate them
on these separate datasets. As shown in Tab. 7, our MTV framework still achieves significantly better
performance. Since neither dataset includes human talking, the lip synchronization metrics (i.e.,
Sync-C and Sync-D) are not applicable for this evaluation.

Table 7: Quantitative comparison results in Landscape and AudioSet-Drum datasets.

Method Landscape Audio-Drum
FVD ↓ Temp-C ↑ Text-C ↑ Audio-C ↑ FVD ↓ Temp-C ↑ Text-C ↑ Audio-C ↑

MM-Diffusion [5] 807.65 94.74 14.66 16.59 1520.09 94.59 14.90 14.11
TempoTokens [1] 797.33 94.67 21.73 18.86 1512.97 94.28 23.18 15.59
Xing et al. [3] 838.03 94.71 21.04 18.70 1589.46 94.49 23.73 17.84
Ours (MTV) 697.51 96.98 25.35 23.37 1511.53 97.50 25.62 39.61

7.6 Organization of Supplementary Video

We provide a supplementary video to dynamically showcase our audio-sync video generation results.
The video is structured as follows: (i) Versatile capabilities across five scenarios. We demonstrate

3https://anonymous.4open.science/w/MTV-F4C4/
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five generation scenarios to show our capabilities in character-centric narrative, multi-character
interaction, sound-triggered events, music-shaped ambiance, and camera movement. (ii) Application
across four typical scenarios. We present four application scenarios for character creation, keyframe
guidance, long video generation, and scene transitions. (iii) Controllability across four key aspects.
We showcase four aspects to control the generated results, including appearance, lip motion, event
timing, and visual mood. (iv) Comparison with state-of-the-art methods. We compare with
relevant audio-sync video generation methods [1, 3, 5] to demonstrate our superior performance. (v)
Ablation study. We present the ablation study results to demonstrate the effectiveness of our proposed
modules. (vi) Discussion with talking human methods. We illustrate the task difference with talking
human methods [71, 7], where our method animates humans with more realistic human gestures and
reasonable camera movement. For a fair comparison with these reference-based methods, we take
the reference image as the first keyframe to leverage our model’s keyframe guidance capability.
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