
No Redundancy, No Stall: Lightweight Streaming 3D
Gaussian Splatting for Real-time Rendering

Linye Wei1,2, Jiajun Tang3,4, Fan Fei3,4, Boxin Shi3,4, Runsheng Wang2,5,6, Meng Li1,2,6∗
1Institute for Artificial Intelligence, Peking University, Beijing, China

2School of Integrated Circuits, Peking University, Beijing, China
3 State Key Laboratory of Multimedia Information Processing, School of Computer Science, Peking University
4National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

5Institute of Electronic Design Automation, Peking University, Wuxi, China
6Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China

meng.li@pku.edu.cn

Abstract—3D Gaussian Splatting (3DGS) enables high-quality render-
ing of 3D scenes and is getting increasing adoption in domains like
autonomous driving and embodied intelligence. However, 3DGS still faces
major efficiency challenges when faced with high frame rate requirements
and resource-constrained edge deployment. To enable efficient 3DGS, in
this paper, we propose LS-Gaussian, an algorithm/hardware co-design
framework for lightweight streaming 3D rendering. LS-Gaussian is
motivated by the core observation that 3DGS suffers from substan-
tial computation redundancy and stalls. On one hand, in practical
scenarios, high-frame-rate 3DGS is often applied in settings where a
camera observes and renders the same scene continuously but from
slightly different viewpoints. Therefore, instead of rendering each frame
separately, LS-Gaussian proposes a viewpoint transformation algorithm
that leverages inter-frame continuity for efficient sparse rendering. On
the other hand, as different tiles within an image are rendered in
parallel but have imbalanced workloads, frequent hardware stalls also
slow down the rendering process. LS-Gaussian predicts the workload for
each tile based on viewpoint transformation to enable more balanced
parallel computation and co-designs a customized 3DGS accelerator to
support the workload-aware mapping in real-time. Experimental results
demonstrate that LS-Gaussian achieves 5.41× speedup over the edge
GPU baseline on average and up to 17.3× speedup with the customized
accelerator, while incurring only minimal visual quality degradation.

I. INTRODUCTION

Volume rendering is a fundamental technique for reconstructing
and synthesizing novel views of 3D scenes, playing a crucial role
in applications such as augmented/virtual reality (AR/VR) [1], [2]
and autonomous driving [3], [4]. With the emergence of embodied
intelligence [5]–[7] and world models [8], [9], 3D representation has
become an essential modality for bridging the physical and virtual
worlds. This shift imposes stringent requirements on both the quality
and efficiency. However, traditional methods such as Neural Radiance
Fields (NeRF) [10], [11] are inadequate to meet these increasing
demands, necessitating more efficient and scalable solutions.

3D Gaussian Splatting (3DGS) [12]–[14] models scenes as collec-
tions of Gaussian ellipsoids with varying shapes, colors, and opac-
ities, synthesizing novel views through projection and accumulation
of Gaussians onto the image plane. With explicit representations
and tile-based parallel rasterization, 3DGS outperforms NeRF-based
methods [15]–[17] in both quality and rendering speed, gaining
significant attention since its introduction. However, as scene scales
expand in practical applications [18], [19], 3DGS must process

This work was supported in part by NSFC under Grant 62495102,
Grant 92464104, Grant 62125401, and Grant 62136001, in part by Beijing
Outstanding Young Scientist Program under Grant JWZQ20240101004, in
part by Beijing Municipal Science and Technology Program under Grant
Z241100004224015, and in part by 111 Project under Grant B18001.

Original 3DGS
PSNR: 33.76

Time: 49.06ms/frame

LS-Gaussian
PSNR: 33.24

Time: 1.04ms/frame

……

……

t t+1 t+5

t t+1 t+5

Fig. 1: Rendering with 3DGS on Jetson AGX Orin and LS-Gaussian.
LS-Gaussian is accelerated by sparse rendering between consecutive
frames and only needs to fully render one in every 6 frames.

millions or more Gaussians, incurring substantial memory and com-
putational overhead. On resource-constrained edge platforms, such as
the Jetson AGX Orin, which are critical for many real-world tasks,
3DGS still struggles to achieve real-time rendering at 90 FPS [20].

Recent acceleration efforts focus on reducing Gaussian primitives
and model size via quantization [21], [22], pruning [23]–[25], and
level-of-detail (LOD) hierarchical rendering [26], [27]. However,
these methods often degrade rendering quality and require costly
retraining. Other approaches [20], [28]–[30] leverage hardware archi-
tecture innovations to enhance rendering efficiency but lack holistic
pipeline optimization, limiting acceleration gains. More importantly,
they overlook the high similarity between consecutive frames, miss-
ing opportunities to leverage prior frames for real-time rendering.

In this paper, we present a detailed analysis of bottlenecks across
different stages of the 3DGS rendering pipeline, revealing inefficien-
cies caused by both computational redundancy and hardware stalls.
The redundancy arises primarily from two sources. On one hand,
3DGS is often deployed in scenarios where an observer renders a
scene from slightly shifting viewpoints across consecutive frames.
This results in substantial inter-frame similarity, making it unneces-
sary to fully re-render every frame. On the other hand, coarse intra-
frame intersection tests introduce a large number of invalid Gaussian-
tile pairs into the rendering pipeline, further exacerbating redundant
computation. In parallel, hardware stalls are mainly attributed to inter-
block idling and intra-block bubbles, which stem from imbalanced
and unpredictable tile workloads. The naive assignment of tiles to
rendering blocks fails to achieve a balanced load distribution, leading
to significant underutilization of hardware resources.

Motivated by these observations, we propose LS-Gaussian, a

depth

Preprocessing Sorting Rasterization

1×1
tile

1×1
pixel

color
blending

Fig. 2: Overview of the 3DGS pipeline.

3DGS pipeline optimized for real-time rendering without retraining,
leveraging frame continuity, as illustrated in Fig. 1. By refining the
algorithm from inter-frame level to intra-frame level, we achieve
redundancy-free, lightweight rendering. Additionally, we design a
load-balanced accelerator architecture tailored for 3DGS, featuring
a streaming pipeline that allows continuous processing across hard-
ware modules without requiring global synchronization. This design
improves hardware utilization and further enhances acceleration. Our
main contributions can be summarized as follows:

• We conduct a comprehensive bottleneck analysis of the entire
3DGS pipeline, identifying two sources of redundancy and two
types of stalls that limit rendering performance.

• To address these inefficiencies, we propose Lightweight Stream-
ing 3DGS (LS-Gaussian), which optimizes the pipeline from
both algorithmic and architectural perspectives. Our training-free
approach enables seamless integration with existing methods.

• Extensive experiments across multiple datasets demonstrate that
LS-Gaussian achieves an average 5.41× speedup on Jetson AGX
Orin GPU. With dedicated hardware support, LS-Gaussian fur-
ther achieves a 17.3× speedup while maintaining high quality.

II. BACKGROUND

A. Preliminaries for 3D Gaussian Splatting

3DGS represents a 3D scene using Gaussian ellipsoids, learned
from a sparse point cloud generated by Structure from Motion
(SfM) [31]. Each Gaussian is defined by its position, covariance
matrix, opacity, and spherical harmonic coefficients, which encode
its appearance color. During inference, the color of each pixel on
the camera plane is computed by accumulating contributions from
Gaussians projected onto that point. As illustrated in Fig. 2, novel
view synthesis in 3DGS consists of three stages:

Preprocessing. Gaussians outside the camera frustum are first
culled and the remaining ones are projected onto the camera plane,
which is subdivided into 16×16-pixel tiles. An axis-aligned bounding
box (AABB) intersection test determines the tiles intersected by each
Gaussian. It enables all pixels within the same tile to share common
Gaussians, effectively leveraging the parallel computing capabilities
of GPU streaming multiprocessors (SMs) during following steps.

Sorting. To accurately resolve occlusions from the viewpoint,
Gaussians within each tile are sorted in depth order. This sorted
sequence dictates the processing order during rasterization, ensuring
correct color accumulation and blending.

Rasterization. SMs are organized into 16×16-thread blocks, where
each tile is mapped to a unique block and each pixel within the tile is
assigned to a distinct thread. During parallel rendering, threads within
a block process the Gaussians covering the tile in Single Instruction

Multiple Threads (SIMT) manner, following the sorted depth order.
Each thread evaluates the density αi of Gaussian i with opacity oi:

αi = oie
− 1

2 (P−µ′
i)

⊤
Σ′−1

i (P−µ′
i), (1)

where P represents the pixel coordinate, µ′
i, Σ

′
i are the position and

2D covariance matrix of the projected Gaussian, respectively. If the
density exceeds a predefined threshold (1

255
), the Gaussian color ci

accumulates, and the pixel color C can be subsequently calculated
through the volume rendering (α-blending) process:

C =
∑
i∈N

ciαiTi =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) . (2)

Once the cumulative transmittance Ti drops below another threshold
(10−4), the pixel is considered fully rendered and thread execution
is terminated, which is known as early stopping [28].

B. Acceleration of 3D Gaussian Splatting

Several studies have highlighted the need to accelerate 3DGS.
A common approach is to reduce the number of Gaussians and
parameter size. Early efforts [23]–[25] explored quantization and
pruning techniques, selectively removing Gaussians based on render-
ing sensitivity. Recently, the demand for reconstruction of city-scale
scenes drives the adoption of level-of-detail (LOD) [20], [26], [27],
which dynamically adjusts the Gaussian resolution based on depth
and visual attention. However, these methods inevitably degrade
reconstruction quality and rely on retraining. As 3DGS has become
a core spatial representation, numerous studies have rapidly emerged
to adapt it to new application scenarios. Retraining-based approaches
require substantial modifications to accommodate different recon-
struction paradigms, limiting their general applicability.

Some studies have explored accelerating 3DGS without retraining.
Pixel and Gaussian reuse [32], [33] exploit the similarity between
adjacent frames to alleviate computational and memory constraints,
but fail to account for the tile-based rendering characteristics of
3DGS, resulting in limited speedup. Preprocessing techniques [28],
[30], [34], [35] improve the Gaussian-tile intersection accuracy,
reducing unnecessary sorting and rendering, but often incur high
computational costs due to complex analytical geometry. Meanwhile,
GPU enhancements [36], [37] and streaming designs [28], [29] aim to
mitigate mutual stalls between hardware units, but lack fine-grained
evaluation of workload imbalance. In contrast, we systematically
address bottlenecks across the entire 3DGS pipeline, minimizing
unnecessary computation while maximizing hardware utilization.

III. MOTIVATION

To further investigate the performance bottlenecks in the 3DGS
pipeline, we perform a comprehensive study of rendering speed and

Challenge 1: Redundant computations due to unnecessary processing

Inter-frame level: Repeated pixel rendering within consecutive frames

Intra-frame level: False positive intersecting Gaussian-tile pairs

Challenge 2: Hardware stalls caused by load imbalance

Inter-block level: Waiting for rasterized cores with more load

Intra-block level: Pipeline bubbles between sorting and rasterization

Full
rendering

Intersecting

Sorting

Rasterization

Bubble

Tiles with
Gaussians

Hardware
Idle

(Sec.IV-C)

(Sec.IV-A)

(Sec.IV-B
 Sec.V-B)

(Sec.IV-B
 Sec.V-B)

viewpoint transformation

Frame t Frame t+1

rendering one by one

Frame t Frame t+1

Accelerator

GPU

Rasterization Cores Rasterization Cores

Fig. 3: Algorithmic and hardware challenges of 3DGS.

hardware efficiency across multiple datasets. Our findings indicate
that inefficiencies primarily arise from redundant computations due
to unnecessary processing and hardware stalls caused by load imbal-
ance, as shown in Fig. 3. Based on these insights, we present two
key observations that motivate our subsequent work.

Observation 1: Redundant computation exists across multiple
levels of 3DGS rendering. At the inter-frame level, real-time 3D
rendering demands seamless transitions between frames, leading to
substantial pixel overlap, especially in static or slowly changing re-
gions, as illustrated in Fig. 4a. We emphasize that existing efforts [32]
to handle viewpoint transformations in 3DGS remain inadequate.
Since projected Gaussians are assigned to workloads at the tile level,
naive pixel warping fails to reduce preprocessing and sorting costs.
Moreover, rendering quality degrades noticeably as the number of
consecutively transformed frames increases, due to the accumula-
tion of interpolation errors. In addition, viewpoint transformations
inherently provide depth priors that could be leveraged to predict
early stopping positions, enabling more accurate tile load estimation
for balanced task allocation. However, this potential remains largely
unexploited.

At the intra-frame level, the original preprocessing stage overes-
timates the number of tiles covered by each Gaussian and increases
invalid Gaussian-tile pairs to be rendered. However, as shown in
Fig. 4b, this coarse bounding box approximation associates each
tile with numerous Gaussians that do not actually contribute to
rendering, significantly increasing the overhead in both the sorting
and rasterization stages. Analytical geometry-based methods provides
a more accurate intersection test but introduce significant overhead
in the preprocessing stage.

Observation 2: Load imbalance causes inefficient hardware
utilization. As mentioned in Sec. II, tiles are mapped to streaming
multiprocessor (SM) blocks for parallel rendering. However, as
illustrated in Fig. 5, where image tiles are grouped by the number of
covered Gaussians, variations in scene complexity cause the per-tile
Gaussian count to vary by more than an order of magnitude, leading
to severe load imbalance.

(a)

(b)

Fig. 4: (a) Proportion of overlap pixels between consecutive frames
on multiple scenes and (b) the intersecting Gaussian-tile pairs judged
by AABB test of the original 3DGS and actual intersecting pairs in
the “drjohnson” scene test set.

Fig. 5: Distribution of the covered Gaussian numbers on different
tiles in a frame from the “train” scene.

At the inter-block level, this imbalance causes lightly loaded
blocks to finish rasterization early but remain idle, waiting for heavily
loaded blocks to complete rendering. On edge devices, additional
processing waves due to limited compute resources help mitigate
this imbalance by allowing underutilized blocks to render more tiles.
However, sparse rendering which exploit frame-to-frame similarity
reduce total workload and wave count, making inter-block waiting a
critical bottleneck again. At the intra-block level, traditional GPU
platforms perform sorting and rendering sequentially on SMs. Recent
works such as GSCore [30] enable parallelism between sorting and
rasterization across tiles by decoupling these stages into dedicated
hardware units, thereby reducing latency across them. However, the
uncertainty in workload distribution results in potential bubbles in
the rasterization unit, waiting for potentially prolonged sorting.

IV. ALGORITHM OPTIMIZATION FOR LIGHTWEIGHT 3DGS

Based on the insights from above analysis, we propose a series
of algorithmic optimizations for lightweight 3DGS that eliminate
computational redundancy at inter-frame and intra-frame levels. First,
We introduce a novel sparse rendering strategy specifically designed
for 3DGS (Sec. IV-A), utilizing tile warping instead of the traditional
pixel warping, thereby better aligning with the tile-based architecture
of the pipeline. By leveraging depth map from viewpoint transfor-
mations, we then predict the locations where early stopping is likely
to occur (Sec. IV-B), effectively estimating the load of each tile.

Reprojection Inpainting

Fig. 6: An example of viewpoint transformation and sparse rendering
between consecutive frames. The reference frame is reprojected to the
target viewpoint, and then inpaint the pixels that have no reprojection
source.

Additionally, we adopt a two-stage strategy to accurately determine
the intersections between Gaussians and tiles (Sec. IV-C).

A. Tile Warpping-based Sparse Rendering (TWSR)

In real-time rendering scenarios, the high similarity between con-
secutive frames motivates the reuse of pixels to reduce redundant
computations. As illustrated in Fig. 6, given a reference frame, we
apply a viewpoint transformation to determine which pixels can be
reused in the next frame. Specifically, pixels from the reference frame
are first back-projected into 3D space using scene depth and camera
pose, forming a point cloud. These 3D points are then transformed
according to the target frame’s camera pose and reprojected onto its
image plane. Due to viewpoint changes and resulting occlusions, the
reprojected target frame typically contains missing pixels, which need
to be filled through rendering.

Pixel warping (PW). Existing methods [16], [32] often use a
NeRF-style pixel warpping-based sparse rendering (PWSR) strategy,
where only the missing pixels in the target frame are filled. However,
we observe that this simple pixel warping approach conflicts with the
3DGS rendering pipeline. Unlike NeRF, where pixels are rendered
independently, 3DGS organizes rendering by tiles, with all pixels in
a tile sharing the same set of Gaussians. As a result, preprocessing
and sorting cannot be skipped unless no pixel within a tile requires
rendering. While rasterization remains the dominant factor in overall
rendering time, sparse rendering reduces its workload, making the
cost of preprocessing and sorting more pronounced. Moreover, unlike
previous works that assume known ground truth depth, we estimate
the depth in real-time by computing an opacity-weighted sum over
the depths of the contributing Gaussians. While this estimation is
generally accurate, it inevitably introduces minor errors. These small
errors tend to be amplified in regions with limited pixel reuse, where
view warping is less effective and missing pixels are more frequent.
In such areas, the projected pixel positions deviate from the actual
rendering results, ultimately degrading the final image quality.

Tile warping (TW). To address the issues mentioned above, we
propose a tile-based inpainting strategy. For tiles with a small number
of missing pixels (empirically set to less than one-sixth of the total
pixels in the tile), we observe that these typically correspond to
regions with smooth depth variation and similar color distributions.
In such cases, we directly interpolate the remaining pixels, bypassing
not only the rasterization stage but also the preprocessing and sorting.
On the other hand, for tiles with a large number of missing pixels,
we re-render the entire tile to ensure high visual fidelity. As shown
in Fig. 7, our tile-level warping consistently achieves higher PSNR
values compared to pixel-based warping approaches.

Fig. 7: Comparison of image quality under different inpainting
strategies for the “chair” scene in the Synthetic-NeRF dataset.

No cumulative error mask (TW w/ mask). Unfortunately, as
the number of consecutive viewpoint transformations increases, we
observe a noticeable degradation in image quality. This is primarily
due to the accumulation of interpolation errors across frames. The
more transformation rounds applied, the more severe the quality
deterioration becomes. To mitigate this issue, we introduce a mask-
ing mechanism for interpolated pixels. These pixels are treated as
”blank” during subsequent view projections and are excluded from
contributing to the next frame. As shown in Fig. 7, this masking
strategy significantly enhances rendering quality compared to direct
inpainting. Remarkably, the quality continues to improve with more
consecutive frame transformations. This improvement is attributed to
the increased number of missing pixels introduced by the mask in
the target frame. According to our tile-based inpainting policy, this
leads to a little more tiles being fully re-rendered, thereby striking a
balance between efficiency and image quality.

B. Depth Prediction for Early Stopping (DPES)

As mentioned in Sec. III, some tiles are covered by thousands
of Gaussians, yet a significant portion of these Gaussians does not
contribute to the color of the pixels in these tiles due to early
stopping. As a result, the total number of overlapping Gaussians
computed during preprocessing does not accurately reflect the actual
workload per tile. To better estimate rendering cost, it is necessary
to predict the early stopping position, which determines the number
of Gaussians that are effectively traversed during rasterization. In
a typical rendering pipeline, this truncation point is unpredictable
and depends on the opacity accumulation of Gaussians at each pixel
during the rasterization stage. However, by leveraging viewpoint
transformations based on scene depth and camera pose, we can
predict and address this issue more effectively.

We emphasize that viewpoint transformations not only enable
target frames to inherit pixel colors from reference frames but also
their corresponding depths. Building on this, we propose a method
to predict the early stopping point for each tile, leveraging the
truncated depth from the reference frame. During the initial rendering,
we record the depth of each pixel in the reference frame, which
corresponds to the depth of the last Gaussian after traversing all
Gaussians or the depth if early stopping occurs. These depths are
reprojected onto the new camera plane. We define the early stopping
depth for each tile in the target frame as the maximum depth of all
valid reprojected pixels within that tile. Any Gaussians beyond this
depth will not be involved in sorting in the target frame. The complete
viewpoint transformation process, including sparse rendering and
truncated depth estimation, is outlined in Algo. 1.

The early stopping estimation can be utilized to predict the
expected load of each tile after sorting, allowing for a more balanced
distribution of the workload across rasterization units. This signifi-

Algorithm 1 Viewpoint Transformation Process

Input: A reference frame Fref, scene depth map Dref, truncated depth
map Dmax

ref , reference viewpoint Vref, target viewpoint Vtgt, re-
rendering threshold N0

Output: A target frame Ftgt with a groups of tiles T , tile-level
truncated depth map DT

1: Ftgt, DT ← Initialize()
2: Pref, P

max
ref ← ProjectTo3D(Fref, Dref, D

max
ref)

3: Ptgt, P
max
tgt ← ViewTransfer(Pref, P

max
ref)

4: Ftgt, D
max
tgt ← Reproject(Ptgt, P

max
tgt)

5: for t ∈ T do
6: N ← ValidPixelSum(Ftgt, t)
7: if N > N0 then
8: Interpolate(Ftgt, t)
9: else

10: DT ← Max(Dmax
tgt , t)

11: Re-render(Ftgt, t)
12: end if
13: end for

Intersected tiles via AABB test Intersected tiles via Stage I test Intersected tiles via Stage II test

�

Tight Box

AABB Box

�
�

����

������

�

�

�
�

� � ��

Fig. 8: Two-stage accurate intersection test.

Fig. 9: Comparison of our two-stage accurate intersection test with
previous works on the number of Gaussian-tile pairs and Speedup
across multiple scenes.

cantly mitigates kernel idle caused by load imbalance, as discussed
in the next section.

C. Two-stage Accurate Intersection Test (TAIT)

As mentioned in Sec. II, a simple AABB test is commonly used to
determine which tiles are covered by each Gaussian. This approach
is efficient for preprocessing, as it only requires the projected center
and the semi-major axis length of the Gaussian. The bounding box
is constructed as the circumscribed square of a circle centered at the
Gaussian’s projection, with a radius equal to the semi-major axis. All
tiles intersecting with this square are considered to intersect with the
Gaussian. However, as shown in Fig. 8, this approximation leads to a
significant number of false positives, greatly increasing the burden in
the subsequent sorting and rasterization stages. This overestimation
is especially pronounced for elongated Gaussians.

We identify three primary sources of false-positive intersections:
1) The semi-major and semi-minor axes of each projected Gaussian

are heuristically defined as 3
√
λ1 and 3

√
λ2, where λ1 and λ2

(λ1 > λ2) are the eigenvalues of the 2D covariance matrix. However,
in the rasterization stage, only Gaussians with opacity above the
threshold contribute to rendering, reducing the effective coverage;
2) The standard approximation uses a circle with radius equal
to the semi-major axis to bound the projected Gaussian, which
significantly overestimates coverage along the minor axis. The use of
a circumscribed square around this circle further inflates the bounding
area, leading to excessive tile assignments; 3) Even within the tight
bounding box of the ellipse, the geometric mismatch between the
elliptical shape of the Gaussian and the rectangular shape of the box
results in additional false positives.

To determine the intersection between Gaussians and tiles accu-
rately, we propose a coarse-to-fine two-stage intersection test. In the
first stage, our objective is to approximate a tight bounding box for
each Gaussian at minimal computational cost, thereby filtering out
the majority of non-overlapping Gaussian-tile pairs. We begin by
modeling the opacity falloff of each Gaussian as a function of distance
d from its projected center:

αi = oie
−d2/2λ. (3)

Based on this formulation, we define the effective semi-major and
semi-minor axes lengths of the projected Gaussian as the distances
at which its opacity decays to the threshold τ = 1

255
:

Rmajor =

√
2 ln

(oi
τ

)
λ1, Rminor =

√
2 ln

(oi
τ

)
λ2. (4)

Similar to the analysis in [34], [35], the boundaries of a tight
bounding box for an ellipse can be determined by locating the
extrema points of the ellipse equation F (x, y) along the Cartesian
axes, where the partial derivatives with respect to x and y are zero:

∂F (x, y)

∂x
= 0,

∂F (x, y)

∂y
= 0. (5)

By substituting these extrema points into the elliptic equation, the
width W and height H of the tight bounding box are obtained through
semi-major axis length Rmajor and components of the projection
covariance matrix Σ′

X , Σ′
Y in the x and y directions:

W = 2

√
Σ′

X

λ1
Rmajor, H = 2

√
Σ′

Y

λ2
Rmajor. (6)

In the second stage, we further discard the tiles that do not actually
intersect with the Gaussian within the tight bounding box. To strike
a balance between accuracy and efficiency, and to avoid making
the preprocessing stage a new bottleneck with complex analytical
geometry, we consider l, the line connecting the center of each tile
to the center of the ellipse onto the short axis of the ellipse, as shown
in Fig. 8. We classify a tile as non-intersecting with the ellipse when:

|l| cos θ + r > Rminor, (7)

where θ represents the angle between l and semi-minor axis of
the ellipse, r represents the circumcircle radius of tiles. By simply
computing and comparing the distance once, we are able to eliminate
almost all false intersection pairs with minimal computational cost.
As illustrated in Fig. 9, compared to prior intersection tests, our
method retains substantially fewer Gaussian-tile pairs than rough
screening approaches, such as GSCore’s OOBB bounding box [30].
At the same time, it introduces only a negligible amount of redun-
dancy when compared to fully accurate intersection tests like FlashGS
[28], while significantly reducing the computational cost of complex
geometric operations. As a result, our approach achieves optimal
speedup across a variety of scenes.

Sorting Unit
(Gaussian depths,
Intra-block load)

>
Ctrl

Thr.1
Thr.2

Intp.

VR

Ref. Color Ref. Depth

Depth truncation

Ref. Dmax

>

Counter buffer
(Reprojection pixels,

Inter-block load)Skip

Tgt.2DTgt.3DRef.3DRef.2D

Ref. Camera pose Tgt. Camera pose

LDU VTU

Preprocessed
Gaussians

DR
AM

Culling and
Conversion Unit

Volume
Rendering Unit

Interpolation
Unit

Volume
Rendering Unit

Interpolation
Unit

Volume
Rendering Unit

Interpolation
Unit

Volume
Rendering Unit

Interpolation
Unit

Sorting Unit VTU

LDU

Fig. 10: Overall design of LS-Gaussian architecture. Components inherited from GSCore [30] are shown in gray, while newly introduced
units are highlighted in blue. The augmented Viewpoint Transformation Unit (VTU) and Load Distribution Unit (LDU) are enclosed in red
and green boxes, respectively, with colored data streams demonstrating the efficient hardware reuse capability of LS-Gaussian.

V. STREAMING HARDWARE ARCHITECTURE

Though it is undeniable that existing GPU platforms provide strong
support for the parallel rendering, we identify the partial mismatch
between GPU architectures and the 3DGS pipeline. Every stage of
rendering heavily relies on GPU SMs, leading to frequent global
memory accesses for reading and writing intermediate data. Also,
different stages exhibit distinct computational characteristics and
hardware demands, constraining rendering efficiency and hardware
utilization. To further accelerate 3DGS, we design a dedicated hard-
ware accelerator, LS-Gaussian, beyond the algorithmic optimizations
above. The streaming mechanism enables early stages to initiate
processing for subsequent frames while later stages are still executing
previous ones, thereby improving parallelism and pipeline efficiency.
We present the overall design (Sec. V-A) and incorporate architectural
implementation at both inter-block and intra-block (Sec. V-B) levels
to minimize stalls across processing units.

A. Overall Design

Fig. 10 illustrates the overall architecture of LS-Gaussian built
upon GSCore [30], which comprises dedicated hardware units for
preprocessing, sorting, and rasterization to enable better inter-tile
overlap. On top of the original design, we enhance the Culling
and Conversion Unit (CCU) responsible for Gaussian preprocessing
to support our proposed two-stage accurate intersection test. This
enhancement introduces a square root and logarithmic operator, while
eliminating the need for GSCore’s complex dual OBB Intersection
Test Units (OIUs).

In addition, we enhance the Viewpoint Transformation Unit (VTU)
to support sparse rendering, and extend the Load Distribution Unit
(LDU) to handle task assignment and execution scheduling for each
rasterization block. These enhanced components are marked in color
in Fig. 10. For each viewpoint, pixel colors and maximum depths
from the reference frame are retrieved for view transformation. This
process involves three matrix multiplications: mapping 2D pixels to
3D space, transforming the resulting point cloud, and reprojecting it
onto the new camera plane. Given that the number of pixels is sub-
stantially smaller than the number of Gaussians, this transformation
incurs negligible overhead and can be parallelized with preprocessing
to fully hide its latency. A counter array tracks the number of validly
projected pixels per tile. When this number exceeds 5

6
of the total

pixels within the tile, the tile is interpolated as described in Sec. IV.
Otherwise, it is forwarded to the Volume Rendering Unit (VRU)
for full re-rendering. We will discuss how we balance the workload
among rasterization units for rendering these tiles.

B. Load Distribution Unit

Due to the severe imbalance in tile workloads, overall hardware
utilization remains suboptimal. To address this, we leverage early
stopping depth prediction to implement balanced workload distribu-
tion across rasterization blocks and adopt a light-to-heavy execution
order within each block. After preprocessing, Gaussians that lie
beyond its predicted early stopping depth are discarded, and the
remaining ones are treated as the tile’s effective workload. We first
compute the ideal average workload W and assign approximately
N tiles per block. Tiles are then assigned to blocks sequentially. If
the cumulative number of Gaussian-tile pairs in the current block
exceeds (1+ 1

N
)W , the current tile is deferred to the next block. To

further enhance memory efficiency, we employ a Morton-order (Z-
order) traversal strategy, which groups spatially adjacent tiles into the
same block to reduce memory access overhead. Notably, this inter-
block workload distribution is executed in parallel with the sorting
process to avoid introducing additional latency. Considering that the
Viewpoint Transformation Unit (VTU) operates in parallel with the
preprocessing stage of the original pipeline, the counter array and
comparators within the VTU can be directly reused, introducing no
additional hardware overhead.

After completing the workload distribution, tiles within each block
are sorted based on their workload, from light to heavy. Since the
sorting process typically takes less time than rasterization, this order-
ing ensures that each tile can quickly access the pre-sorted Gaussians
during the rasterization stage. It provides sufficient time for sorting
high-workload tiles, preventing long sorting times from exceeding the
rasterization time of lighter workload tiles, thus avoiding rasterization
bubbles and reducing overall rendering time. The overhead of sorting
the tiles’ workloads is minimal in comparison to the Gaussian depth
sorting. Therefore, we can reuse the Gaussian Sorting Unit (GSU)
for this task, similar to the inter-block workload distribution design,
without the need for additional hardware units.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Benchmarks. We evaluate our rendering pipeline on the Synthetic-
NeRF dataset [10], which includes eight scenes with continuous
viewpoints. To further validate the generality of our approach, we also
select six real world scenes, including three indoor scenes (playroom,
drjohnson, room) and three outdoor scenes (train, truck, garden),
from three widely adopted datasets: Tanks & Temples [38], Deep
Blending [39], and Mip-NeRF 360 [40]. Since these real world
datasets typically contain sparse camera trajectories, we perform

interpolation to construct continuous view sequences suitable for real
time rendering at 90 FPS. This setup simulates camera motion at 1.8
meters and a rotational speed of 90 degrees per second.

Baselines. We use the original 3DGS running on Jetson AGX Orin
as our GPU baseline. To comprehensively evaluate the effectiveness
of our proposed LS-Gaussian in both algorithmic optimization and
architectural implementation, we compare it with five recent 3DGS
acceleration methods. Specifically, we evaluate rendering quality
against Potamoi [32], another method based on viewpoint transfor-
mation. For performance evaluation, we compare GPU acceleration
with AdR-Gaussian [34] and SeeLe [29], and compare our accelerator
design with GSCore [30] and MetaSapiens [20].

Hardware Implementation. We implement the RTL design of LS-
Gaussian hardware components using Synopsys synthesis in 16nm
FinFET technology. Based on GSCore, we replace part of the
multipliers and adders in the Culling and Conversion Unit (CCU) with
a square root and logarithm operator. In addition, we introduce an
interpolation unit, a 16KB counter buffer and other specially designed
units. Benefiting from the reuse of existing hardware modules by the
Load Distribution Unit (LDU), our total design area is only 1.84
mm2, representing just a 0.39 mm2 increase over the scaled GSCore
design in 16nm (1.45mm2), and remaining significantly smaller than
Jetson-series edge GPUs (˜350 mm2) and MetaSapiens (2.73 mm2).

B. Rendering Quality

We compare the rendering quality of our Tile Warping-based
Sparse Rendering (TWSR) against original 3DGS and Potamoi on
the Synthetic-NeRF dataset, as shown in Fig. 11a. Both TWSR and
Potamoi adopt a strategy of fully rendering one frame every six
frames. Our method results in an average SSIM loss of only 0.005
and a PSNR loss of 1.4 dB across six scenes, which is significantly
lower than Potamoi’s SSIM loss of 0.063 and PSNR loss of 6.8 dB.
This is because Potamoi’s pixel-based inpainting ignores potentially
invalid reprojections when depth priors are unavailable, resulting in
incorrect floating pixels and severe visual artifacts, whereas TWSR
performs tile-level full re-rendering for key regions with insufficient
reprojection. In addition, due to the need for full preprocessing and
sorting, Potamoi achieves limited speedups. Fig. 11b presents the
visual result of a representative frame. Given that PSNR values on
the Synthetic-NeRF dataset are typically above 30 dB, even more
than 1.5 dB drop in TWSR does not introduce visible distortion.

We further investigate the sensitivity of image quality and ren-
dering speedup to the warping window size n, which defines how
many frames between every two fully rendered frames, on real-
world scenes. As discussed earlier, we interpolate frames in the
original real-world datasets to ensure frame continuity. Therefore, we
evaluate image quality by measuring the difference between rendered
outputs w/ and w/o the proposed viewpoint transformation. As shown
in Fig. 12a, increasing the window size leads to greater speedups
but also results in image quality degradation. To balance rendering
quality and efficiency, we set n = 5 as the default configuration for
subsequent performance evaluations. The visual results and speedups
of two representative frames are as shown in Fig. 12b. We observe
that indoor scenes, which typically exhibit smaller depth variations,
achieve both better rendering quality and higher speedups compared
to outdoor scenes with more edges and corners. This phenomenon
will be discussed in detail in the following subsection.

C. Performance on GPU

We evaluate the performance of LS-Gaussian deployed directly on
the GPU platform using Jetson AGX Orin, as shown in Fig. 13a. Ex-
perimental results demonstrate that LS-Gaussian achieves an average

(a)

Original 3DGS
PSNR: 36.65
SSIM:0.981

LS-Gaussian
PSNR: 35.01
SSIM:0.975

(b)

Fig. 11: (a) Comparison of the rendering quality between LS-
Gaussian and original 3DGS [12]/ Potamoi [32] on the Synthetic-
NeRF dataset and (b) two representative rendering output images
with original 3DGS and our LS-Gaussian, respectively.

(a)

PSNR: 31.40
FPS: 51 (5.7×)

PSNR: 35.74
FPS: 60 (7.1×)

(b)

Fig. 12: (a) Speedup and PSNR (w/ and w/o TWSR) under different
warping window size n on multiple real-world scenes, where each
color represents a scene and (b) two representative real-world ren-
dering images w/ TWSR, tested on Jetson AGX Orin.

speedup of 5.41× over the GPU baseline, satisfying the 90 FPS real-
time rendering requirement on the Deep Blending dataset. Compared
with AdR-Gaussian and SeeLe, LS-Gaussian also achieves 1.85× and
1.75× speedups, respectively. The most significant improvements are
observed in indoor scenes such as playroom and drjohnson from
the Deep Blending dataset. This can be attributed to the flattened
structures and uniform color patterns typical of indoor environments
like floors and walls, which offer higher view consistency and are
more amenable to sparse rendering.

To verify this observation, we conduct an ablation study across six
real-world scenes, as shown in Fig. 13b. We progressively integrate

(a)

(b)

Fig. 13: (a) Comparison of LS-Gaussian performance against prior
works across multiple datasets on Jetson AGX Orin and (b) ablation
study with algorithm optimizations on real-world scenes.

our algorithmic optimization techniques into the original 3DGS
pipeline. The introduction of Tile Warping-based Sparse Rendering
(TWSR) results in 1.56-2.35× speedups in the three outdoor scenes
(train, truck, garden), while achieving 2.41-3.55× speedups in indoor
scenes, confirming that the characteristics of indoor environments
are more conducive to sparse rendering. The Two-stage Accurate
Intersection Test (TAIT) provides an approximate 2× speedups across
all scenes, highlighting its general effectiveness in reducing spurious
Gaussian-tile pairs. Notably, beyond enabling accurate tile-level load
estimation, Depth Prediction of Early Stopping (DPES) offers a
modest speedup by saving preprocessing and sorting overhead for
the next frame through depth-based culling.

D. Performance with Hardware Support

We compare our LS-Gaussian with dedicated architectural design
against two recent 3DGS accelerators, GSCore and MetaSapiens,
in terms of speedup over the GPU baseline. To ensure fairness,
we normalize the performance of GSCore and MetaSapiens to the
same 1.45 mm2 area as LS-Gaussian using the Speedup-Area Curve
reported by MetaSapiens. Since MetaSapiens does not report specific
speedups in each scene, we conduct our experiments on scenes from
Synthetic-NeRF, Tanks & Temples and Deep Blending, which are
the same as GSCore and MetaSapiens, only reporting the average
speedup of MetaSapiens. As shown in Fig. 14, LS-Gaussian achieves
an average speedup of 17.3×, outperforming GSCore at 9.1× and
MetaSapiens at 14.5×. We ablate the contribution of our base archi-
tecture and load distribution strategy from inter- to intra-block level,
as illustrated in Fig. 15a, this improvement stems from our specialized
hardware design for each processing stage and the balanced load
distribution. Besides, we analyze how the hardware reuse strategy in
the Load Distribution Unit (LDU) helps reduce the overall accelerator
area. As shown in Fig. 15b, we report the area overhead of the
augmented modules relative to GSCore. By reusing the counter buffer
and comparators from the Viewpoint Transformation Unit (VTU),
we achieve a 32% reduction in additional area cost. Further reuse

Fig. 14: Speedup comparison between our hardware and prior archi-
tectures.

(a) (b)

Fig. 15: (a) Ablation study on the accelerator speedup with inter-
block load (LD1) and intra-block load distribution (LD2), and (b)
area savings of the augmented units when adopting hardware reuse.

TABLE I: Rasterization core utilization(%) comparison between orig-
inal architecture and our LS-Gaussian on Synthetic-NeRF(Synthetic),
Tanks & Temples (T&T), DeepBlending (DB), and Mip-NeRF 360
(Mip) datasets.

Method Synthetic T&T DB Mip Average

Original 45.6 43.1 49.5 67.9 51.5
LS-Gaussian 88.5 89.8 78.0 98.2 88.6

of Gaussian Sorting Unit (GSU) increases the total savings to 36%,
resulting in only 0.39 mm2 of extra area.

As summarized in Tab. I, we further report the average utilization
of hardware units across datasets. In contrast to sparse rendering,
which favors indoor scenes, balanced load distribution yields greater
performance gains in outdoor datasets such as Tanks & Temples. Un-
like indoor environments, outdoor scenes exhibit significant variation
in detail across regions, resulting in large workload gaps between
high-frequency objects and low-frequency backgrounds, which ne-
cessitates carefully designed workload scheduling.

VII. CONCLUSION

In this paper, we present LS-Gaussian, a lightweight and streaming
framework designed to accelerate 3D Gaussian Splatting on resource-
constrained platforms. Through a systematic analysis of bottlenecks
across the entire 3DGS pipeline, LS-Gaussian introduces a suite
of algorithmic optimizations and architectural designs to eliminate
redundant computation and mitigate hardware stalls. Extensive eval-
uations on both synthetic and real-world datasets demonstrate that
LS-Gaussian delivers an average speedup of 5.41× over the edge
GPU baseline, and up to 17.3× acceleration with dedicated hardware
support, while maintaining high rendering quality.

REFERENCES

[1] S. Katragadda, W. Lee, Y. Peng, P. Geneva, C. Chen, C. Guo, M. Li,
and G. Huang, “NeRF-VINS: A real-time neural radiance field map-
based visual-inertial navigation system,” in Proc. of IEEE International
Conference on Robotics and Automation (ICRA), 2024, pp. 10 230–
10 237.

[2] Y. Jiang, C. Yu, T. Xie, X. Li, Y. Feng, H. Wang, M. Li, H. Y. K. Lau,
F. Gao, Y. Yang, and C. Jiang, “VR-GS: A physical dynamics-aware
interactive Gaussian splatting system in virtual reality,” in Proc. of the
ACM SIGGRAPH Conference and Exhibition On Computer Graphics
and Interactive Techniques (SIGGRAPH), 2024, p. 78.

[3] J. Cao, Z. Li, N. Wang, and C. Ma, “Lightning NeRF: Efficient
hybrid scene representation for autonomous driving,” in Proc. of IEEE
International Conference on Robotics and Automation (ICRA), 2024, pp.
16 803–16 809.

[4] A. Tonderski, C. Lindström, G. Hess, W. Ljungbergh, L. Svensson, and
C. Petersson, “NeuRAD: Neural rendering for autonomous driving,” in
Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024, pp. 14 895–14 904.

[5] Z. Qi, S. Yuan, F. Liu, H. Cao, T. Deng, J. Yang, and L. Xie, “AIR-
Embodied: An efficient active 3DGS-based interaction and reconstruc-
tion framework with embodied large language model,” arXiv preprint
arXiv:2409.16019, 2024.

[6] S. Huang, L. Chen, P. Zhou, S. Chen, Z. Jiang, Y. Hu, P. Gao, H. Li,
M. Yao, and G. Ren, “EnerVerse: Envisioning embodied future space
for robotics manipulation,” arXiv preprint arXiv:2501.01895, 2025.

[7] T. Chen, O. Shorinwa, W. Zeng, J. Bruno, P. M. Dames, and M. Schwa-
ger, “Splat-Nav: Safe real-time robot navigation in Gaussian splatting
maps,” IEEE Transactions on Robotics, 2025.

[8] G. Zhao, C. Ni, X. Wang, Z. Zhu, X. Zhang, Y. Wang, G. Huang,
X. Chen, B. Wang, Y. Zhang, W. Mei, and X. Wang, “DriveDreamer4D:
World models are effective data machines for 4d driving scene repre-
sentation,” arXiv preprint arXiv:2410.13571, 2024.

[9] C. Ni, G. Zhao, X. Wang, Z. Zhu, W. Qin, G. Huang, C. Liu, Y. Chen,
Y. Wang, X. Zhang, Y. Zhan, K. Zhan, P. Jia, X. Lang, X. Wang,
and W. Mei, “ReconDreamer: Crafting world models for driving scene
reconstruction via online restoration,” arXiv preprint arXiv:2411.19548,
2024.

[10] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for
view synthesis,” in Proc. of European Conference on Computer Vision
(ECCV), 2020.

[11] C. Li, S. Li, Y. Zhao, W. Zhu, and Y. Lin, “RT-NeRF: Real-time on-
device neural radiance fields towards immersive AR/VR rendering,”
in Proc. of IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2022, pp. 132:1–132:9.

[12] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian
splatting for real-time radiance field rendering,” ACM Transactions on
Graphics (TOG), vol. 42, no. 4, pp. 139:1–139:14, 2023.

[13] G. Chen and W. Wang, “A survey on 3D Gaussian splatting,” arXiv
preprint arXiv:2401.03890, 2024.

[14] T. Wu, Y. Yuan, L. Zhang, J. Yang, Y. Cao, L. Yan, and L. Gao,
“Recent advances in 3D Gaussian splatting,” Computational Visual
Media, vol. 10, no. 4, pp. 613–642, 2024.

[15] S. Li, C. Li, W. Zhu, B. T. Yu, Y. K. Zhao, C. Wan, H. You, H. Shi,
and Y. C. Lin, “Instant-3D: Instant neural radiance field training towards
on-device AR/VR 3D reconstruction,” in Proc. of Annual International
Symposium on Computer Architecture (ISCA), 2023, pp. 6:1–6:13.

[16] Y. Feng, Z. Liu, J. Leng, M. Guo, and Y. Zhu, “Cicero: Addressing
algorithmic and architectural bottlenecks in neural rendering by radiance
warping and memory optimizations,” in Proc. of Annual International
Symposium on Computer Architecture (ISCA), 2024, pp. 1293–1308.

[17] S. Li, Y. Zhao, C. Li, B. Guo, J. Zhang, W. Zhu, Z. Ye, C. Wan, and
Y. C. Lin, “Fusion-3D: Integrated acceleration for instant 3D reconstruc-
tion and real-time rendering,” in Proc. of International Symposium on
Microarchitecture (MICRO), 2024, pp. 78–91.

[18] Y. Liu, C. Luo, L. Fan, N. Wang, J. Peng, and Z. Zhang, “CityGaussian:
Real-time high-quality large-scale scene rendering with Gaussians,” in
Proc. of European Conference on Computer Vision (ECCV), 2024.

[19] J. Fan, W. Li, Y. Han, and Y. Tang, “Momentum-GS: Momentum
Gaussian self-distillation for high-quality large scene reconstruction,”
arXiv preprint arXiv:2412.04887, 2024.

[20] W. Lin, Y. Feng, and Y. Zhu, “MetaSapiens: Real-time neural rendering
with efficiency-aware pruning and accelerated foveated rendering,” in
Proc. of International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2025.

[21] K. L. Navaneet, K. P. Meibodi, S. A. Koohpayegani, and H. Pirsiavash,
“CompGS: Smaller and faster Gaussian splatting with vector quantiza-
tion,” in Proc. of European Conference on Computer Vision (ECCV),
2024.

[22] F. Di Sario, R. Renzulli, M. Grangetto, A. Sugimoto, and E. Tartaglione,
“GoDe: Gaussians on demand for progressive level of detail and scalable
compression,” arXiv preprint arXiv:2501.13558, 2025.

[23] G. Fang and B. Wang, “Mini-Splatting: Representing scenes with a
constrained number of Gaussians,” in Proc. of European Conference
on Computer Vision (ECCV), 2024.

[24] Z. Ye, C. Wan, C. Li, J. Hong, S. Li, L. Li, Y. Zhang, and Y. C. Lin,
“3D Gaussian rendering can be sparser: Efficient rendering via learned
fragment pruning,” in Proc. of Neural Information Processing Systems
(NeurIPS), 2024.

[25] Y. Zhang, W. Jia, W. Niu, and M. Yin, “GaussianSpa: An “optimizing-
sparsifying” simplification framework for compact and high-quality 3D
Gaussian splatting,” arXiv preprint arXiv:2411.06019, 2024.

[26] T. Lu, M. Yu, L. Xu, Y. Xiangli, L. Wang, D. Lin, and B. Dai, “Scaffold-
GS: Structured 3D Gaussians for view-adaptive rendering,” in Proc. of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2024, pp. 20 654–20 664.

[27] K. Ren, L. Jiang, T. Lu, M. Yu, L. Xu, Z. Ni, and B. Dai, “Octree-
GS: Towards consistent real-time rendering with LOD-structured 3D
Gaussians,” arXiv preprint arXiv:2403.17898, 2024.

[28] G. Feng, S. Chen, R. Fu, Z. Liao, Y. Wang, T. Liu, Z. Pei,
H. Li, X. Zhang, and B. Dai, “FlashGS: Efficient 3D Gaussian
splatting for large-scale and high-resolution rendering,” arXiv preprint
arXiv:2408.07967, 2024.

[29] X. Huang, H. Zhu, Z. Liu, W. Lin, X. Liu, Z. He, J. Leng, M. Guo,
and Y. Feng, “SeeLe: A unified acceleration framework for real-time
Gaussian splatting,” arXiv preprint arXiv:2503.05168, 2025.

[30] J. Lee, S. Lee, J. Lee, J. Park, and J. Sim, “GSCore: Efficient radiance
field rendering via architectural support for 3D Gaussian splatting,” in
Proc. of International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2024.

[31] J. L. Schonberger and J.-M. Frahm, “Structure-from-Motion revisited,”
in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[32] Y. Feng, W. Lin, Z. Liu, J. Leng, M. Guo, H. Zhao, X. Hou, J. Zhao, and
Y. Zhu, “Potamoi: Accelerating neural rendering via a unified streaming
architecture,” ACM Transactions on Architecture and Code Optimization,
vol. 21, no. 4, pp. 80:1–80:25, 2024.

[33] M. Tao, Y. Zhou, H. Xu, Z. He, Z. Yang, Y. Zhang, Z. Su, L. Xu, Z. Ma,
R. Fu et al., “GS-Cache: A gs-cache inference framework for large-scale
Gaussian splatting models,” arXiv preprint arXiv:2502.14938, 2025.

[34] X. Wang, R. Yi, and L. Ma, “AdR-Gaussian: Accelerating Gaussian
splatting with adaptive radius,” in Proc. of the ACM SIGGRAPH Confer-
ence and Exhibition on Computer Graphics and Interactive Techniques
in Asia (SIGGRAPH Asia), 2024.

[35] A. Hanson, A. Tu, G. Lin, V. Singla, M. Zwicker, and T. Goldstein,
“Speedy-Splat: Fast 3D Gaussian splatting with sparse pixels and sparse
primitives,” arXiv preprint arXiv:2412.00578, 2024.

[36] S. Li, B. Keller, Y. C. Lin, and B. Khailany, “GauRast: Enhancing GPU
triangle rasterizers to accelerate 3D Gaussian splatting,” arXiv preprint
arXiv:2503.16681, 2025.

[37] Z. Ye, Y. Fu, J. Zhang, L. Li, Y. Zhang, S. Li, C. Wan, C. Wan,
C. Li, S. Prathipati et al., “Gaussian blending unit: An edge GPU plug-
in for real-time Gaussian-based rendering in AR/VR,” arXiv preprint
arXiv:2503.23625, 2025.

[38] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples:
Benchmarking large-scale scene reconstruction,” ACM Transactions on
Graphics (TOG), vol. 36, no. 4, pp. 1–13, 2017.

[39] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, and G. Bros-
tow, “Deep blending for free-viewpoint image-based rendering,” ACM
Transactions on Graphics (TOG), vol. 37, no. 6, pp. 1–15, 2018.

[40] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman,
“Mip-NeRF 360: Unbounded anti-aliased neural radiance fields,” in
Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

	Introduction
	Background
	Preliminaries for 3D Gaussian Splatting
	Acceleration of 3D Gaussian Splatting

	Motivation
	Algorithm Optimization for Lightweight 3DGS
	Tile Warpping-based Sparse Rendering (TWSR)
	Depth Prediction for Early Stopping (DPES)
	Two-stage Accurate Intersection Test (TAIT)

	Streaming Hardware Architecture
	Overall Design
	Load Distribution Unit

	Experimental Results
	Experimental Setup
	Rendering Quality
	Performance on GPU
	Performance with Hardware Support

	Conclusion
	References

