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Efficient 3D Surface Super-resolution via
Normal-based Multimodal Restoration

Miaohui Wang, Yunheng Liu, Wuyuan Xie, Boxin Shi, and Jianmin Jiang

Abstract—High-fidelity 3D surface is essential for vision tasks across various domains such as medical imaging, cultural heritage
preservation, quality inspection, virtual reality, and autonomous navigation. However, the intricate nature of 3D data representations
poses significant challenges in restoring diverse 3D surfaces while capturing fine-grained geometric details at a low cost. This
paper introduces an efficient multimodal normal-based 3D surface super-resolution (mn3DSSR) framework, designed to address the
challenges of microgeometry enhancement and computational overhead. Specifically, we have constructed one of the largest normal-
based multimodal dataset, ensuring superior data quality and diversity through meticulous subjective selection. Furthermore, we explore
a new two-branch multimodal alignment approach along with a multimodal split fusion module to mitigate computational complexity while
improving restoration performances. To address the limitations associated with normal-based multimodal learning, we develop novel
normal-induced loss functions that facilitate geometric consistency and improve feature alignment. Extensive experiments conducted on
seven benchmark datasets across four different 3D data representations demonstrate that mn3DSSR consistently outperforms state-of-
the-art super-resolution methods in terms of restoration accuracy with high computational efficiency.

Index Terms—Photometric stereo-based normal dataset, multimodal 3D surface super-resolution, microgeometry restoration

✦

1 INTRODUCTION

H IGH-fidelity 3D surfaces are essential for obtaining
precise geometric and topological information [1],

directly impacting both academic research and industrial
applications. 3D surface super-resolution (3DSSR) has thus
become a focal point of research across various domains
[2], [3], with the potential to significantly enhance the
performance of downstream vision tasks such as object
recognition, scene understanding, pose estimation, and quality
inspection. Similar to the advancements in 2D image super-
resolution (2DISR) [4], [5], [6], where deep learning has
significantly improved the restoration1 of pixel-based details
like texture and sharpness, 3DSSR provides the opportunity
to recover fine-grained surface details and achieve micro-
geometry accuracy from low-resolution 3D data representa-
tions. However, directly applying 2DISR methodologies to
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1. In this paper, the term ‘restoration’ refers specifically to the
recovery of fine-grained surface details from coarse 3D input repre-
sentations, excluding broader degradation types such as image noise,
blur, environmental interference, or compression artifacts.

3D surfaces is non-trivial due to the inherent complexities of
surface geometry, curvature, topological consistency, and lighting
variations, which are not adequately addressed in the 2D
image domain.

The inherent complexity of 3D surface structures poses
significant challenges for super-resolution, but deep learn-
ing techniques offer distinct advantages in 3DSSR modeling
due to their powerful nonlinear representation capabilities.
Existing 3DSSR methods largely rely on specific 3D data rep-
resentations (e.g., point cloud, mesh, voxel, depth, and normal),
limiting the scalability, flexibility, and applicability of their
convolutional network architectures. For example, point-
based methods typically begin by obtaining topological
information through point networks [7], followed by the
use of upsampling modules to restore point positions, as
illustrated in Fig. 1 (a). Mesh-based methods often employ
surface subdivision to generate dense meshes, and then
utilize graph networks [8] to enhance geometric details,
as shown in Fig. 1 (b). Voxel-based methods commonly
leverage 3D generative models [9], where sampling noise
(or latent code) is mapped to high-resolution voxels, con-
ditioned on corresponding low-resolution voxels, as illus-
trated in Fig. 1 (c). Depth-based methods usually interpolate
the depth values before applying 2DISR networks to restore
depth details [10], as depicted in Fig. 1 (d). Recently, we
have developed normal-based approaches to enhance the
restoration of high-resolution normal maps [11], followed
by a surface-from-normal (SfN) module to reconstruct fine-
grained 3D surfaces as depicted in Fig. 1 (e).

In this paper, we present a novel multimodal normal-
based 3DSSR framework, as shown in Fig. 2. The proposed
multimodal 3DSSR meets two primary challenges compared
with the existing state-of-the-arts [19], [24], [25]: (1) effec-
tively utilizing information from multiple modalities with-
out overfitting, and (2) incorporating geometric constraints
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TABLE 1: Taxonomy of 3D surface super-resolution (3DSSR) frameworks. Representative 2D and 3D methods are
compared in terms of data representation, input modality, type of topology, time and space complexity, sensitivity to
surface gradients, and robustness to noise. Notably, our method integrates three modalities with affordable complexity.

Algorithm Type Representation Input modality Topology Complexity Gradient Robustness
Qian2021CVPR [12] 3D point cloud point cloud n/a high ✘ low
Feng2022CVPR [13] 3D point cloud point cloud n/a high ✔ low

He2023CVPR [7] 3D point cloud point cloud n/a high ✘ medium
Loop2008TOG [14] 3D mesh mesh irregular low ✘ medium

Liu2020TOG [8] 3D mesh mesh irregular high ✔ low
Xie2022TPAMI [15] 3D voxel voxel regular 3D grid high ✘ medium

Shim2023CVPR [16] 3D voxel voxel regular 3D grid high ✘ medium
Voynov2019ICCV [17] 2D depth image depth image, RGB image regular 2D grid low ✔ medium

Haefner2020TPAMI [18] 2D depth image depth image, RGB image regular 2D grid low ✔ medium
Deng2021TPAMI [19] 2D depth image depth image, RGB image regular 2D grid medium ✘ medium

Zhao2022CVPR [20] 2D depth image depth image, RGB image regular 2D grid low ✘ medium
Metzger2023CVPR [10] 2D depth image depth image, RGB image regular 2D grid medium ✘ medium

Wang2022TPAMI [21] 2D depth image binocular stereo images regular 2D grid low ✘ medium
Ju2024TCSVT [22] 2D normal map RGB images regular 2D grid medium ✔ medium
Xie2022CVPR [11] 2D normal map normal, depth, RGB images regular 2D grid high ✔ high
Xie2023IJCAI [23] 2D normal map normal, RGB images regular 2D grid high ✔ high

Ours 2D normal map normal, depth, RGB images regular 2D grid medium ✔ high

into model training to better capture 3D microgeometry
structures. To address these challenges, our method incorpo-
rates three special components: multimodal pre-processing,
texture-shape-based two-branch alignment, and multimodal
split fusion. The pre-processing module is designed to trans-
form raw inputs for better model training, the alignment
module removes irrelevant data while preserving texture
and shape information, and the fusion module optimizes
the integration of multimodal features, significantly re-
ducing model parameters and computational complexity.
Additionally, we explore the geometry properties of normal
maps and introduce curl-based and alignment-based loss
functions that impose additional constraints and regu-
larization on intermediate features, improving restoration
performance and accelerating convergence.

To facilitate the development of normal-based deep
3DSSR models, we further establish a large-scale multi-
modal dataset, including three data modalities: normal
maps, depth images, and multi-illumination RGB images.
In summary, this paper makes four key contributions2:

• We propose an efficient multimodal normal-based 3D
surface super-resolution (mn3DSSR) framework via: (i)
introducing a multimodal Swin-Transformer alignment
(MSTA) module that aligns texture and shape features
across two network branches; (ii) developing a multi-
modal split fusion (MSF) module that dynamically inte-
grates the two feature branches with the normal modality
towards improvement of its restoration performances.

• To optimize the training of our mn3DSSR, we propose
three new loss functions, where the first one distinguishes
between foreground and background normal distortion
calculations, the second leverages curl-based normal mea-
surements to capture microgeometry structures, and the
third enhances multimodal feature representation through
shape-texture alignment. Hyper-parameter sensitivity ex-
periments validate the effectiveness of these losses in the
normal-based 3DSSR task.

2. The source code, normal-based multimodal dataset, and the
collected 3DSSR and 2DISR methods are made publicly available at
https://charwill.github.io/mn3dssr.html.
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Fig. 1: Comparison of 3DSSR architectures across 3D data
representations: (a) point cloud-based methods use point
networks, (b) mesh-based use graph networks, (c) voxel-
based adopt generative models, and (d) depth-based rely
on 2DISR networks. In contrast, (e) our multimodal normal-
based approach enables more effective texture–shape fusion.

• To obtain high-quality multimodal training data with
fine-grained surface details and complex geometries, we
propose to establish a dedicated dataset, one of the largest
real-world normal-based datasets to date, consisting of
600 different 3D surfaces with rich details. Compared to
existing benchmarks, our dataset outperforms them on
average in terms of scale, resolution, quality, and diversity.

• Extensive experiments have been carried out to provide
a comprehensive evaluation of our proposed against
24 representative 3DSSR and 2DISR methods on four
normal-based benchmark datasets, and additional anal-
ysis has been extended to three additional 3D data
representations–point cloud, mesh, and depth datasets.
The experimental results demonstrate that our pro-
posed method consistently outperforms cutting-edge ap-
proaches in terms of restoration accuracy with high
computational efficiency.

Finally, the work described in this paper presents a sig-
nificant extension of our earlier research [11], incorporating
several key improvements, which can be highlighted as:
(i) we have explored an efficient multimodal normal-based
network architecture, featuring newly designed alignment
and fusion modules to reduce computational overhead
while improving restoration performance; (ii) we have de-
vised new normal-induced loss functions that enable better
model training; (iii) we have substantially expanded our

https://charwill.github.io/mn3dssr.html
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multimodal dataset by increasing data scale, quality, and
diversity through meticulous subjective selection; and (iv)
we have conducted extensive experiments on four 3D data
representations (e.g., point cloud-, mesh-, depth-, and normal-
based datasets), providing a comprehensive evaluation of the
existing 3DSSRs and 2DISRs.

2 RELATED WORK

In this section, we provide an overview of representative
methods for 3DSSRs. Based on the type of 3D data rep-
resentations, these methods can be roughly classified into
3D domain-based and 2D domain-based approaches, as
provided in Table 1.

2.1 Surface Super-resolution in 3D Domain
3D domain-based studies have explored 3DSSR based on
various 3D data representations, including point clouds,
mesh, voxel, and other explicit 3D formats.
Point Cloud-based. Point clouds represent 3D shapes as dis-
crete sets of data points with Cartesian coordinates (x, y, z)
which correspond to its position in a 3D space. Various
strategies have been developed to improve the number of
points, including point convolutional networks [26], graph
models [12], and Transformers [27]. However, due to the
sparsity and uneven density of point clouds, existing point
cloud-based 3DSSRs are difficult to handle a large number
of data points.

Recent advances, such as local neural implicit repre-
sentations, address these issues by generating continuous
interpolation points [13]. Additionally, combining point
convolution modules with traditional techniques has shown
promise in upsampling performance [7]. However, these
methods still face limitations due to the need for intensive
neighborhood look-ups, constrained by the absence of
topological information.
Mesh-based. Mesh is a widely-used 3D representation due
to its ability to provide complete topological information,
facilitating the computation of geometric features such as
normal and curvature. Traditional methods [14], [28], [29]
have been designed to improve mesh resolution by lever-
aging local connectivity patterns and have demonstrated
maturity and efficiency. However, these handcrafted priors
often struggle with diverse 3D objects and fail to accurately
recover sharp geometric details.

The introduction of graph learning frameworks, particu-
larly graph neural network [8], has enabled the recovery of
surface details by leveraging neighborhood information in
a mesh. Despite these advancements, mesh-based 3DSSRs
face challenges due to their irregular topology, which
necessitates the explicit storage and processing of adjacency
information. Also, computational complexity makes it diffi-
cult to handle denser 3D meshes, limiting the scalability of
these methods for high-resolution tasks.
Voxel-based. Voxel representations divide 3D surfaces into
a grid of volumetric pixels, with each voxel representing a
small cube of space. The relationship to the object surface
can be defined by a signed distance from the voxel center
to the nearest point on the surface. Voxel representations
have a regular structure, which makes it easy to apply
convolutional networks.

Early voxel-based 3DSSRs [9], [15] have employed gen-
erative models to achieve conditional probability distribu-
tions. In addition to directly representing 3D shapes with
voxels, some methods [16], [30], [31] have also leveraged
implicit fields stored within voxels or other regular struc-
tures to capture finer geometric details. However, since
memory consumption and computation complexity grow
rapidly with the number of voxels, the output size of these
methods is typically limited to small values (e.g., 2563).

2.2 Surface Super-resolution in 2D Domain

Although 3D-domain methods offer several advantages,
they also face significant bottlenecks of storage and compu-
tation. In contrast, 2D domain-based methods can alleviate
many of these challenges, and we mainly review 3DSSRs
based on depth and normal data representations.
Depth-based. Depth images significantly reduce the com-
plexity of storing and processing 3D surfaces by encoding
space positions in a regular 2D image format. This enables
the application of well-established image super-resolution
techniques to 3DSSR.

Due to the low-precision of depth images acquired by
camera sensors, recent studies have primarily concentrated
on using high-resolution RGB images to guide depth super-
resolution (DSR). For instance, many DSRs [10], [20], [32],
[33] have combined traditional image filtering with deep
learning to enhance depth images. To further reduce texture
interference while enhancing 3D surface details, depth
images and corresponding RGB guidance can be processed
separately, enabling better multimodal learning [19].

Depth-based 3DSSRs effectively recover position and
contour information, but they struggle to restore finer
geometric structures. To address this limitation, DSR tech-
niques that better represent geometric details have been
explored. For instance, the perceptual quality of depth
images can be improved by incorporating normal maps
or rendered images into loss functions [17]. Additionally,
photometric stereo is combined with DSRs, where multiple
high-resolution RGB images are used to recover normal
maps and optimize depth image details [18]. While these
approaches have employed normal maps to enhance surface
quality, they primarily use rough normal information as an
auxiliary input and lack further exploration to restore fine-
grained 3D surface details.
Normal-based. Normal maps encode rich 3D geometric
information (e.g., surface orientation, bump, and microge-
ometry) in the 2D domain and, compared to depth images,
are better suited for representing small variations in surface
details. Additionally, high-quality normal maps can be
easily obtained through photometric stereo setups [34], [35].

In photometric stereo, multi-illumination RGB images
capture pixel level 3D surface features, inspiring the ex-
ploration of joint super-resolution and surface reconstruc-
tion [22]. To further leverage multiple image modalities
generated during surface acquisition, we have developed
a Transformer-based multimodal 3DSSR scheme [11]. Later,
we have employed a variational autoencoder (VAE) to
model probability distributions in the latent space and im-
prove modality alignment [23]. Our early methods provide
a general multimodal framework for normal-based 3DSSR.
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Fig. 2: Illustration of the proposed framework for 3D surface super-resolution applications. Low-resolution depth,
normal, and RGB inputs are enhanced to recover high-resolution outputs. While our framework is trained on photometric
stereo data, it generalizes to other 3D representations (e.g., point cloud, mesh, voxel, and depth). For detailed examination, please
zoom in on the electronic version.

In this paper, we refine it by proposing efficient network
designs that significantly enhance multimodality utilization
while reducing model complexity.

Table 1 provides a general taxonomy of representative
3DSSRs. Our proposed framework leverages multimodal
framework to enhance surface details, as shown in Fig. 2.
Unlike existing 3D domain methods, our mn3DSSR primar-
ily utilizes normal maps and maintains a regular topol-
ogy, which ensures efficient computation and storage for
dense 3D surfaces. In contrast to 2D domain methods, our
mn3DSSR does not require additional high-resolution RGB
images for guidance. By directly enhancing normal maps,
our framework effectively preserves gradient information
related to object surfaces, which is crucial for accurately
characterizing microgeometry surface details. Additionally,
our framework demonstrates strong resilience to noise, ben-
efiting from the robustness of SfN reconstruction. Moreover,
we have achieved computational efficiency comparable to
that of most deep learning-based 2DISR methods.

3 METHODOLOGY

3.1 Problem Formulation

Let H , W , τ , and L denote the width, height, upsampling
ratio, and the number of lighting directions in a photometric
stereo setup. Our proposed mn3DSSR framework utilizes a
low-resolution normal map Nlr∈R

H
τ ×W

τ ×3 as the primary
3D surface representation. It leverages the depth modality
Dlr∈R

H
τ ×W

τ and the RGB modality Ilr∈R
H
τ ×W

τ ×3×L to
generate a high-resolution normal map Nsr ∈ RH×W×3,
which is then used to reconstruct a fine-grained 3D surface
S3D. The overall process can be formulated as:

S3D = FSfN(Fmn3DSSR(Nlr,Dlr, Ilr)), (1)

where FSfN represents a typical SfN approach, and Fmn3DSSR
denotes our mn3DSSR model to generate Nsr . It is impor-
tant to note that the choice of the SfN method is not the
focus of this paper, and any advanced SfN method [36], [37]
can be used in Eq. (1). Consequently, 3DSSR can be further
reduced to only perform the super-resolution operation on
normal maps, akin to 2DISRs.

More specifically, Fmn3DSSR is further divided into three
components: (1) we pre-process the three input modalities
using Fprocess to extract the transformed features Nt

lr, Ns
lr,

D′
lr, and I′lr, respectively; (2) we then align the resulted

low-resolution I′lr and D′
lr to the normal domain using

a two-branch alignment module Falign. This delivers two
outputs: Ftn, representing the high-frequency texture nor-
mal feature, and Fsn, representing the low-frequency shape
normal feature; (3) finally, we fuse two alignment branches
with the normal modality utilizing a fusion module Ffuse,
resulting in the final enhanced normal map Nsr . These three
components can be formulated as:

Nt
lr,N

s
lr,D

′
lr, I

′
lr = Fprocess(Nlr,Dlr, Ilr),

Ftn,Fsn = Falign(N
t
lr,N

s
lr,D

′
lr, I

′
lr),

Nsr = Ffuse(Nlr,Fsn,Ftn).

(2)

In mn3DSSR, our optimization objective is to minimize
the normal pixel distance Lpix between the ground-truth
normal Ngt and the enhanced normal Nsr . Additionally,
we introduce the curl normal loss to ensure model training
more focused on microgeometry structures, including a
curl-weighted normal loss Lweight

curl and a curl-regularized
normal loss Lregular

curl . Furthermore, we incorporate the
multimodal alignment loss to provide auxiliary supervision
from two alignment branches, including a RGB-texture loss
Ltexture

align and a depth-shape loss Lshape
align . Consequently, the

joint optimization objective is defined as:

min
Nsr,Ftn,Fsn

{Lpix(Nsr,Ngt)

+ λweight
curl × Lweight

curl (Nsr,Ngt) + λregular
curl × Lregular

curl (Nsr)

+ λalign × (Ltexture
align (Ftn,N

t
gt) + Lshape

align (Fsn,Dgt))},

(3)

where λweight
curl , λregular

curl , and λalign represent three scaling
factors used to adjust the contributions of each loss term.
We provide detailed explanations of the associated network
modules and the loss function designs in the following. An
overview of our mn3DSSR is illustrated in Fig. 3.

3.2 Multimodal Pre-processing Stage (MPS)

Essentially, MPS performs necessary feature transformation
on the raw multimodal data, addressing two main issues: (1)
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Fig. 3: Pipeline of the proposed multimodal normal-based 3D surface super-resolution network (mn3DSSR). The
three input modalities are first processed by the multimodal pre-processing stage (MPS), followed by alignment via the
multimodal Swin-Transformer alignment (MSTA) module. The aligned features are then fused by the multimodal split
fusion (MSF) module to produce a high-resolution normal map for 3D surface reconstruction.

normalizing the input to minimize variations and distribu-
tion differences across modalities from various sources, and
(2) constructing primary features for the alignment module,
generating shape and texture features.
Normal Modality. As the ultimate target for 3DSSR, Nlr

is used to guide the alignment of Ilr and Dlr to their re-
spective shape and texture components. We employ the fre-
quency separation [1] to obtain the high-frequency texture
normal component Nt

lr and the low-frequency geometric
shape component Ns

lr. In other words, Nlr = Nt
lr +Ns

lr.
Depth Modality To construct a 3D position encoding for
the subsequent alignment module, we adopt the depth
modality Dlr. We normalize it by subtracting the mean
and dividing by the standard deviation of depth values,
resulting in D′

lr ∈ RH
τ ×W

τ ×3. This operation preserves the
relative position information expressed by the depth while
facilitating learning in subsequent networks.
RGB Modality. As our RGB modality includes multi-
illumination images, three basic aggregation functions
(i.e., max, min, and mean) are used to maintain permutation
invariance and obtain the brightest, darkest, and average
intensity RGB images. These three types of RGB feature
images retain important information, such as specularities,
shadows, and colors, reflecting spatial variations in material
and geometric characteristics on 3D surface S3D. To reduce
domain differences, we normalize and concatenate them to
obtain I′lr ∈ RH

τ ×W
τ ×9, as shown in Fig. 4.

3.3 Multimodal Swin-Transformer Alignment (MSTA)
To align the previously processed I′lr and D′

lr, we propose a
new two-branch multimodal Swin-Transformer alignment
(MSTA) module, consisting of a RGB-texture alignment
branch and a depth-shape alignment branch. Specifically,
our objective is primarily to enhance the texture normal
information by aligning I′lr with Nt

lr in the RGB-texture
branch. Simultaneously, we inject the global 3D geometric
information into the shape normal by aligning D′

lr with Ns
lr

in the depth-shape branch. An overview of our proposed
MSTA module is shown in Fig. 5 (a).

Both the texture and shape alignment branches are de-
signed with three main components: (1) feature embedding,
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Fig. 4: Multimodal Pre-processing Stage (MPS). Three
modalities are pre-processed to generate primary features
for subsequent alignment and fusion.

(2) Swin-Transformer alignment, and (3) feature adaptation.
In the feature embedding, we utilize one 2-layer 3×3
convolution with the ELU activation function to project the
inputs (i.e., Nt

lr, Ns
lr, D′

lr, and I′lr) into shallow features
(i.e., Ft, Fs, Fdpt, and Frgb).

In the Swin-Transformer alignment, we draw inspiration
from the complementary roles of cross-attention and self-
attention in modeling modality interactions. We propose
a mix attention Transformer (MAT). Our MAT module is
tailored to integrate the functionalities of both the cross-
attention [38] and the window self-attention [39]. The MAT
layer is formulated as:

Fmat(X,Y) = ((1− α)× softmax(
YWc

q(XWk)
T

√
dk

+B)

+ α× softmax(
XWs

q(XWk)
T

√
dk

+B))XWv,

(4)

where X and Y represent two different multimodal features
after window partition. Wk, Wv , Wc

q , and Ws
q represent

the projection matrices for key, value, cross-attention query
and self-attention query, respectively. B denotes the relative
position embedding, and dk denotes the number of feature
channels. α ∈ [0, 1] is a trainable scalar used to balance
self-attention and cross-attention, which is initialized to 0.5.
Finally, the feature adapter Ffa employs a combination of
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Fig. 5: Multimodal Swin-Transformer Alignment (MSTA): (a) MSTA aligns RGB and depth features via an embed-
ding–alignment–adaptation pipeline, (b) Mix Attention Transformer (MAT) extends Swin Transformer with cross and self-
attention, (c) Upsampling Block, and (d) Residual Block.

channel attention (CA) and convolution layer to stabilize
the aligned features, as shown in Fig. 5 (a).

The key difference between our MAT block and existing
Transformer block is the mix attention layer, which allows
for automatic trade-offs between cross-attention and self-
attention during the learning process. This is achieved
without significantly increasing the number of parameters,
enabling the alignment module to model interactions be-
tween the two modalities more effectively and flexibly. Both
the texture and shape alignment branches are constructed
based on our MAT, albeit with slightly different designs.
Detailed explanations of our two-branch alignments are
provided in the following, as shown in Fig. 5 (b).
RGB-Texture Alignment. The RGB-texture branch primar-
ily aligns I′lr with Nt

lr. While the extracted hierarchical
RGB features I′lr contain rich color and texture information,
their high-frequency components can be complex, often
containing noises or outliers due to specularities and shadows.

To mitigate these negative effects, we employ a symmet-
ric dual MAT design to align RGB and normal texture fea-
tures. This design facilitates adaptive information exchange
between both modalities while refining their respective
features. In this branch, we assemble six MAT blocks into
a group, adding one 3×3 convolution and one residual
connection at the end of each group to stabilize feature
learning. We refer to it as a dual MAT group (DMATG)
and use two DMATGs in the MSTA module. Specifically,
DMATG is formulated as follows:

{Fk
rgb,F

k
t } =


{Fconv(I

′
lr),Fconv(N

t
lr)} , k = 0

{Conv(Fk−1
rgb ) + Fk−7

rgb ,Conv(F
k−1
t ) + Fk−7

t } , k > 0&k%7 = 0

{Fmat(F
k−1
rgb ,F

k−1
t ),Fmat(F

k−1
t ,Fk−1

rgb )} , otherwise,
(5)

where Fk
rgb and Fk

t denote the k-th layer features produced
by the corresponding RGB and normal modalities. Conv
denotes one 3×3 convolutional layer, Fmat denotes a MAT
layer, and Fconv(·) = Conv(ELU(Conv(·))) represents one
2-layer convolutional block with the ELU activation.

Finally, we concatenate the features Fkmax

rgb and Fkmax
t

from the last layer into the subsequent feature adapter Ffa
to obtain the aligned texture normal feature Ftn as:

Ftn = Ffa(Concat(F
kmax
rgb ,Fkmax

t )), (6)

where Concat represents the operation of concatenating
features along the channel dimension, and the concatenated
feature is Frgbt = Concat(Fkmax

rgb ,Fkmax
t ). Our Ffa module

consists of one CA block Fca and one 3×3 convolution
layer. Specifically, Ffa(Frgbt) = Conv(Fca(Frgbt)) =
Conv(Sigmoid(Conv1(ReLU(Conv1(AvgPool(Frgbt)))))⊙
Frgbt)), where Conv1 denotes one 1×1 convolution and ⊙
denotes an element-wise multiplication.
Depth-Shape Alignment. The depth-shape alignment fo-
cuses on aligning D′

lr with Ns
lr. Given the strong corre-

lation between depth and normal, this alignment branch
is inherently simpler than the RGB-texture alignment. To
control computational complexity, we concatenate the shal-
low depth feature Fdpt = Fconv(D

′
lr) and the shallow shape

normal feature Fs = Fconv(N
s
lr), and leverage MAT blocks

to model their interactions.
To enhance the representation of global geometry shape,

we further inject 3D positional information into the MAT
block. Specifically, we apply the sinusoidal position encod-
ing [38] to D′

lr to obtain a 3D positional encoding Plr. This
encoding normalizes the numerical range of 3D coordinates
to the interval [0, 1], making them more suitable for training.
We then extract the shallow position feature Fp from Plr by
one layer 3×3 convolution, Fp = Conv(Plr). In this branch,
we replace the dual MAT pair structure with a single MAT
structure. We refer to it as the single MAT group (SMATG)
and use two SMATGs in the MSTA module. The related
computation process is formulated as:

Fk
sn =


Concat(Fconv(D

′
lr),Fconv(N

s
lr)) , k = 0

Conv(Fk−1
sn ) + Fk−7

sn , k > 0 & k%7 = 0

Fmat(F
k−1
sn ,Fp) , otherwise,

, (7)

where Fk
sn denotes latent features at the k-th layer that

incorporate both depth and shape information. Finally, we
apply the feature adapter to obtain the aligned shape normal
feature Fsn = Ffa(F

kmax
sn ).

3.4 Multimodal Split Fusion (MSF)

After processing the side-modality features in the MSTA
module, Ftn and Fsn are further fused into the normal
modality to assist in super-resolution feature extractions.
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Fig. 6: Multimodal Split Fusion (MSF). A texture and
a shape enhancer decompose and refine features from
Fl

sr , which are then fused with enhanced Ftn and Fsn.
Subsequently, the fused texture and shape components
(i.e., Fl

texture and Fl
shape) are recombined through the

texture-shape fusion module.

In our previous method [11], a fusion module has been
developed based on a spatial feature transform to modu-
late side-modalities. However, this approach often neglects
dynamic changes in the main normal branch and struggles
to adapt to the distinct characteristics of texture and shape
normal features. To address this limitation, we propose
a multimodal split fusion (MSF) module that integrates
texture and shape normal features. The network architecture
of our MSF is illustrated in Fig. 6.

As mentioned earlier, Ftn contains richer local texture
information. Given that convolutional neural networks
(CNNs) are particularly effective at extracting local spatial
texture, we utilize a residual channel attention block (RCAB)
as a texture enhancer Ftexture to focus on extracting high-
frequency local detail information from Ftn and the en-
hanced normal feature Fsr . Subsequently, we perform the
element-wise addition ⊕ to fuse the latent features. The
texture enhancement is formulated as:

Fl
texture = F l

texture(Ftn)⊕F l
texture(F

l
sr), (8)

where Fl
texture represents the enhanced texture feature in

the l-th MSF block, and F0
sr = Conv(Nlr). F l

texture represents
our texture enhancer, containing one residual block (RB) and
one RCAB. The residual block is shown in Fig. 5 (d).

In contrast, since Fsn has more global shape information,
we employ a lightweight Transformer block (LTB) as the
shape enhancer Fshape to obtain the low-frequency global
shape information from Fsn and Fsr . We also perform the
element-wise addition to aggregate the extracted features
into Fl

shape. The shape enhancement is formulated as:

Fl
shape = F l

shape(Fsn)⊕F l
shape(F

l
sr), (9)

where F l
shape denotes the l-th shape enhancer consisting of

one RB and one LTB.
Once we obtain the fused feature components Fl

texture

and Fl
shape, we concatenate them and further apply a

combination of the Fca and Conv layers in the texture-
shape fusion module to generate a complete normal feature
representation. The fused feature is then fed into a plug-
and-play super-resolution backbone block Fsr. This process
can be formulated as:

Fl+1
sr = Fsr(Ffa(Concat(F

l
texture,F

l
shape)) + Fl

sr). (10)

For convenience, Fsr utilizes a recently proposed residual
hybrid attention group [40], although it can be replaced with
other advanced super-resolution backbones.

As shown in Fig. 3, our MSF module is repeated 12 times
to fully fuse and leverage joint information from the cross-
modality features. Finally, the resulting feature is processed
through upsampling blocks as

Nsr = Norm(Fpub(F
lmax
sr )⊕Fbic(Nlr)), (11)

where Fpub denotes the pixel-shuffle upsampling block,
Fbic represents the Bicubic upsampling operation, and Norm
denotes the vector normalization operation, ensuring that
the output normals remain unit vectors.

3.5 Loss Functions

To improve and optimize the training process of our
mn3DSSR, we propose an integrated loss measurement
framework, which consists of three loss items: (1) normal
pixel loss Lpix, (2) curl normal loss terms: Lweight

curl and
Lregular

curl , and (3) modality alignment loss terms: Ltexture
align

and Lshape
align .

3.5.1 Normal Pixel Loss

In our previous work [11], we have employed a combination
of ℓ1 loss and cosine loss. However, we have identified
certain limitations of these commonly used loss functions
when applied to unit vectors in normal maps. For instance,
ℓ1 loss exhibits a negative correlation with angular error
beyond a certain threshold, which can affect the direction of
gradient updates. Meanwhile, cosine loss is functionally
equivalent to mean squared error (MSE) for unit vectors,
but it often results in slower convergence.

To address these issues, we propose to consider normal
angular error (NAE), which shares properties with ℓ1 loss in
measuring vector angular error. Specifically, the NAE loss
satisfies the unit vector constraint in the foreground, and
the MSE loss continues to be used in the background. This
is primarily because the NAE loss becomes undefined or un-
informative when computed on zero vectors in background
regions. To address this issue, we introduce the normal pixel
loss Lpix, which applies distinct loss functions to foreground
and background regions, respectively. In summary, our new
normal pixel loss Lpix is defined as:

Lpix(Nsr,Ngt) =
1

HW

∑HW

p=1
Mp × arccos(γ(Np

sr ·N
p
gt))︸ ︷︷ ︸

normal angular error

+
1

HW

∑HW

p=1
(1−Mp)× (Np

sr −Np
gt)

2︸ ︷︷ ︸
mean squared error

,
(12)

where p denotes the pixel position, and · denotes the
inner product. M represents the value of a binary object
mask, with 1 indicating the foreground. Np

sr and Np
gt

represent the unit vectors in Nsr and Ngt, respectively.
γ(·) = min(max(·, ϵ− 1), 1− ϵ) crops the input to the range
[ϵ − 1, 1 − ϵ] for the gradient of arccos diverges at -1 and
1. ϵ denotes a small scalar, which is set to 1e-5 in our
implementation.
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TABLE 2: Effects of gradient kernel size on curl features.
Results are reported under the ×4 setting on the DiLiGenT.

Kernel PSNR SSIM MAE MRDE Time (ms)
2×2 28.7096 0.9287 3.7105 0.6932 0.1795
3×3 28.7131 0.9290 3.7079 0.6770 0.3745
5×5 28.7105 0.9283 3.7036 0.7073 0.3874
7×7 28.7655 0.9289 3.6845 0.7288 0.4491

3.5.2 Curl Normal Loss

In addition to the unit vector constraint, the local normals
of a continuous surface usually needs to satisfy the inte-
grability constraint in SfN. Non-integrable local normals
indicate the presence of discontinuities or non-differentiable
geometric details on 3D surface S3D. To consider these
factors, we have designed a new normal curl function Fcurl
to measure the surface integrability of local normals.

To define our normal curl function, we consider a dis-
crete scalar field Ggrid defined on a regular 2D grid, and use
a finite difference to approximate the differential operator:
∇Ggrid = (∇xGgrid,∇yGgrid). In the experiments, we
approximate the differential operators along x- and y-axis
as convolutions with the kernels [0, 0, 0;−1, 0, 1; 0, 0, 0] and
[0, 1, 0; 0, 0, 0; 0,−1, 0], respectively. As shown in Table 2,
we compare the 2×2, 3×3, 5×5, and 7×7 kernel config-
urations, where the 3×3 kernel achieves the best MRDE
and the second-lowest computational latency (on NVIDIA
A100@40G). Moreover, the 2×2 kernel represents a com-
posite structure of [−1, 1] for x-axis and [1,−1]T for y-axis.
Larger kernels tend to blur curl features, reducing angular
error due to smoothing local noise but slightly increasing
MRDE by compromising global accuracy at discontinuities.
Overall, the subtle MAE and MRDE variations indicate that
the proposed curl feature is robust to kernel size.

With this approximation, we define the discrete curl
operator between two inputs (G1

grid,G
2
grid) as:

Curl(G1
grid,G

2
grid) = ∇xG

2
grid −∇yG

1
grid. (13)

According to Stokes’ theorem [41], the curl value of
a gradient field obtained from a differentiable surface is
zero everywhere. It can be proven that Curl(∇Ggrid) ≡
0 based on the associativity of convolution operations.
However, under a single-view projection, Dlr often contains
discontinuous or non-differentiable regions, which cause
inconsistencies between the gradients obtained from Nlr

and those obtained by finite difference from Dlr. In other
words, this may result in a non-zero curl field, Nx

Nz
̸= ∇xDlr

or Ny

Nz
̸= ∇yDlr, where Nx,y,z represents three different

components of Nlr. Therefore, the curl field computed from
the normal map can reflect sharp geometric details.

Inspired by this observation, we define a handcrafted
curl function as

Fcurl(Nlr) =

∣∣∣∣tanh(Curl(Nx

Nz
,
Ny

Nz
))

∣∣∣∣⊙M, (14)

where | · | denotes the absolute operation. M enables the
curl feature to focus on the foreground. tanh is applied to
compress the range of curl values.
Curl-weighted Normal Loss. To enhance the recovery of
geometric details, we propose a curl-weighted normal loss

Lweight
curl . Specifically, we use the curl feature to weight the

normal angular error, and Lweight
curl is defined as:

Lweight
curl (Nsr,Ngt) =

∑HW
p=1

Fp
curl(Ngt)

||Fcurl(Ngt)||1arccos(γ(N
p
sr ·N

p
gt)). (15)

Similar to other differential loss functions [42], [43], Lweight
curl

can accelerate convergence and improve the restoration
accuracy. We use the same loss type for the background
but with different weights, which allows us to adjust the
strength of the curl weighting via λweight

curl in Eq. (3).
Curl-regularized Normal Loss. To mitigate the impact of
noise and outliers introduced by photometric stereo setups,
we further propose a curl-regularized loss Lregular

curl , aimed
at ensuring the consistency of local normals. As previously
mentioned, the curl feature should be zero for smooth
surfaces in the gradient field. Incorporating this loss helps
to eliminate inconsistencies between local normals, thereby
enhancing the overall restoration quality. Based on the curl
feature, Lregular

curl is formulated as:

Lregular

curl (Nsr) =
1

HW
∥Fcurl(Nsr)∥1. (16)

3.5.3 Modality Alignment Loss
To emphasize the importance of fine-grained normal details
for the texture alignment module, we upsample the aligned
texture normal feature Ftn to obtain enhanced textures.
Subsequently, we use the ground-truth texture normal map
Nt

gt for supervision learning. As a result, the RGB-texture
alignment loss Ltexture

align is defined as:

Ltexture
align (Ftn,N

t
gt) = ∥F texture

up (Ftn)⊕Fbic(N
t
lr)−Nt

gt∥1, (17)

where F texture
up represents a texture upsampling block com-

posed of three RBs and several pixel-shuffle upsampling lay-
ers, as shown in Fig. 5 (c). The exact number of upsampling
layers depends on the ratio τ , where one more upsampling
layer is added when the value of τ doubles.

Similarly, we upsample the shape feature Fsn and
use the ground-truth depth Dgt for supervision learning.
This is tailored to assist the shape alignment module in
emphasizing the significance of overall geometry features.
The depth-shape alignment loss Lshape

align is defined as:

Lshape

align (Fsn,Dgt) = ||Fshape
up (Fsn)⊕Fbic(D

′
lr)−Dgt||1, (18)

where Fshape
up denotes a shape upsampling block that has

the same network architecture as F texture
up . Meanwhile, we

obtain an enhanced depth image Dsr = Fshape
up (Fsn) ⊕

Fbic(D
′
lr).

3.6 Normal-based Multimodal Dataset
Several normal-based datasets have been established [44],
[45], [46]. Nonetheless, we continue to face the following
fundamental challenges in training our mn3DSSR model:
(i) a notable scarcity of diverse 3D surface shape datasets,
particularly within open-source repositories; (ii) significant
difficulties in obtaining high-quality normal maps and
corresponding multimodal data that represent fine-grained
surface details and complex geometries; and (iii) the limited
scale of existing high-quality normal datasets, which is
typically insufficient in size to support the training of robust
deep super-resolution models.
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Fig. 7: Typical examples from our multimodal dataset. This
dataset contains a diverse range of 3D objects, spanning
from complex natural objects to intricate man-made items.
The modalities shown from top to bottom are: normal, depth,
RGB, and the corresponding mesh surface.

To address these challenges, we propose to establish a
dedicated and large-scale normal-based multimodal dataset
acquired using photometric stereo setups. The essential mo-
tivation lies in the fact that photometric stereo is typically
more accurate for computing surface normals than other
methods based on single image prediction, such as shape-
from-shading or deep learning models [34]. Fig. 7 shows
typical samples from our dataset. The normal modality Ngt

provides fine-grained geometry information. Meanwhile,
the depth modality Dgt provides a continuous 3D surface
constraint. In contrast, the RGB modality Igt contains 18
images captured under diverse calibrated lightings, which
represents complex texture and material features that pro-
vide rich visual cues for multimodal surface processing.

3.6.1 Dataset Improvement

We have initially established a normal-based multimodal
dataset called wonderful photometric stereo (WPS) [11] to sup-
port the training of deep 3DSSR models. However, WPS suf-
fers from several limitations. First, it captures RGB images
using a camera sensor without applying Gamma correction,
resulting in inaccuracies when acquiring surface normal
maps. Second, it uses a single least squares-based Lambertian
method [47] for synthesizing normal maps, which limits
the overall quality of 3D surface reconstructions. Third, it
contains only 400 objects, offering a foundation for surface
shape analysis but lacking diversity and scale. Lastly,
outdated data capture and processing techniques limit its
ability to generate a high-quality 3DSSR dataset.

To address these shortcomings, we make six major im-
provements and construct one of the largest normal-based
multimodal datasets, namely WPS+: (1) re-capturing low-
quality samples to enhance overall data quality; (2) applying
Gamma correction before obtaining surface normal maps
to resolve inaccuracies; (3) using three different photometric
stereo-based methods [48], [49], and [50] to significantly
improve the quality of 3D surface reconstructions; (4)
involving three professionals who spent over 1,000 hours
carefully evaluating and selecting the best 3D reconstruction
results to ensure high-quality samples; (5) expanding the
dataset to 600 objects, offering better representation of di-
verse surface shapes; and (6) scaling the dataset with larger
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based datasets by vertex count, including mean, standard
deviation, quartiles, and maximum.

magnifications to create a comprehensive super-resolution
dataset, including ×2, ×4, and ×8 sampling settings.

To illustrate the overall statistics of diverse and complex
geometries in our WPS+, we have visualized the sample
types and vertices. For example, Fig. 8 (a) depicts the
proportion of samples across various bump degrees and
object types. As demonstrated, our dataset covers a wide
range of surface features, such as rough, bump, and flat.
Fig. 8 (b) shows the distribution of vertex counts within
WPS+ (i.e., green line). After removing invalid background
vertices, the average number of vertices is 1.93×106, and the
maximum reaches 5.01× 106. Since photometric stereo-based
methods generate 3D surfaces with the same resolution as
the resulted normal maps, each sample generally has high-
resolution. Notably, our WPS+ achieves the highest vertex
counts among these datasets.

3.6.2 Dataset Quality Comparison
To demonstrate the dataset quality, we have conducted
quantitative comparison among seven popular normal-
based datasets, including DiLiGenT [44], Gourd & Apple [51],
Havard [52], LUCES [45], DiLiGenT102 [53], WPS [11], and
our newly constructed WPS+.

Specifically, we have evaluated these normal-based
datasets across four key metrics: number of shape, resolu-
tion, entropy, and BRISQUE.
• ‘Shape’ represents the number of unique 3D surfaces

contained in each dataset, demonstrating the richness of
object shapes in each dataset.

• ‘Pixel’ shows the average and standard deviation of
the number of normal pixels, which corresponds to the
average normal resolution in each dataset.

• ‘Entropy’ [54] measures the uniformity of the normal
pixel value distribution, which is used to quantify the
complexity and diversity of content details.

• ‘BRISQUE’ [55] is a commonly used no-reference visual
quality assessment metric, which is employed to quantify
blurriness and noise in each dataset.

In Table 3, these quantitative metrics collectively demon-
strate the advantages of our WPS+ in terms of scale, resolu-
tion, diversity, and quality in comparison with mainstream
normal-based benchmark datasets: (1) WPS+ contains the
largest number of unique 3D object shapes among all
the evaluated datasets. (2) WPS+ has the largest average
number of normal pixels, indicating the highest resolution.
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TABLE 3: Dataset quality comparison of normal-based
datasets. Best and second-best results are shown in bold and
underlined, respectively. Our WPS+ provides high-quality
normal maps with greater complexity and scale.

Dataset Shape (↑) Pixel (↑) Entropy (↑) BRISQUE (↓)
Gourd&Apple 3 0.33(±0.06)Mpx 2.89(±0.79) 49.36(±1.41)

Harvard 7 0.39(±0.16)Mpx 4.45(±0.32) 29.46(±7.45)
DiLiGenT102 10 0.52(±0.01)Mpx 3.38(±0.62) 46.16(±4.44)

DiLiGenT 10 0.06(±0.02)Mpx 2.47(±0.46) 48.42(±4.15)
LUCES 14 1.35(±0.44)Mpx 3.56(±0.66) 43.47(±5.35)

WPS 400 0.52(±0.18)Mpx 3.57(±0.66) 40.10(±7.41)
WPS+ 600 2.34(±1.78)Mpx 3.66(±0.78) 35.20(±6.63)

(3) While not the highest, WPS+ exhibits the second-highest
diversity in image content and visual quality. As a result,
the comprehensive nature of WPS+ enables more robust and
reliable evaluations of normal-based 3DSSR methods.

4 EXPERIMENTAL VALIDATIONS

In this section, we discuss the implementation details of
our mn3DSSR. We also compare our method against repre-
sentative 3DSSR models on popular normal-based datasets
and demonstrate various aspects of our contributions via a
detailed ablation study. Additionally, we provide complex-
ity analysis and evaluate performance across other 3D data
representations (i.e., point cloud, mesh, and depth).

4.1 Experimental Protocols
Normal-based Datasets. To prepare a comprehensive eval-
uation, we randomly divide our WPS+ dataset into training,
validation and testing sets, comprising 520, 30, and 50
samples, respectively. Both the training and testing sets are
downsampled using the Bicubic method by factors of × 1

2 ,
× 1

4 , and × 1
8 to generate low-resolution inputs (i.e., Nlr,

Dlr, and Ilr). We have trained all learning-based methods
(excluding point cloud- and mesh-based) on the training set
of our WPS+ and tested all methods on the testing set.

In addition, we have conducted the cross-dataset val-
idation on three small normal-based datasets: DiLiGenT,
Havard, and LUCES, details of which are summarized
in Table 4 together with WPS+. As seen, these datasets
exhibit distinct characteristics that reflect the generalization
capabilities of 3DSSR methods.
Evaluation Metrics. To comprehensively evaluate the over-
all performance of 3DSSR methods, we have adapted four
metrics from the 2D image and 3D surface domains. In the
2D image domain, we employ the classic peak signal-to-
noise ratio (PSNR) to measure normal pixel-level accuracy.
Additionally, we use the structural similarity index measure
(SSIM) to evaluate the structure similarity.

In the 3D surface domain, we utilize mean angular error
(MAE) [50], [56], a widely used metric for normal-based
3D data representation, which converts the average per-
pixel normal error into the angular value. We apply MAE
to assess the reconstruction errors for the enhanced normal
maps, as it is sensitive to local details. Furthermore, we
adopt mean relative depth error (MRDE) [10], [57], another
commonly used quality metric for depth-based 3D data
representation, which evaluates the accuracy of the resulting
3D surface by comparing normalized depth images and is
particularly sensitive to overall shape accuracy.

TABLE 4: Characteristics of four normal-based datasets.
These datasets are selected to evaluate 3DSSR methods,
based on their distinct features such as resolution, material
diversity, and surface complexity.

Dataset Samples Characteristics
DiLiGenT 10 low-resolution, multiple materials, smooth

surface, rich geometric shape.
Harvard 7 medium-resolution, relatively simple mate-

rials, moderate surface complexity, random
texture details.

LUCES 14 high-resolution, multiple materials, complex
artificial objects.

WPS+ 600 high-resolution, multiple materials, complex
natural objects.

4.2 Implementation Details
Our framework is implemented using PyTorch. For the
model hyper-parameters, we employ two DMATGs and
two SMATGs in the RGB-texture and depth-shape branches,
where each group consists of six dual or single MAT blocks
in the MSTA module. The maximum value of k is set to
kmax=14, and the maximum value of l is set to lmax=12 in
the MSF module. The number of feature channels is set to
dk=64. We train our mn3DSSR model for 1,000 epochs with a
batch size of 12, employing the Adam optimizer with default
parameters (β1 = 0.9 and β2 = 0.999). During training, we
randomly crop the low-resolution version of Ilr, Nlr, and
Dlr to 64×64 pixels and correspondingly crop the high-
resolution images to 64τ×64τ pixels. To avoid encountering
empty content, we ensure that the cropped region contains
at least 1% valid pixels.

Meanwhile, we apply simple data augmentation tech-
niques, including random rotations (90◦, 180◦, and 270◦)
and horizontal flipping. It is important to note that for the
calculation of the normal curl Fcurl, rotating the normal
directions is necessary to maintain consistency with the
corresponding normal map Nlr.

Finally, we employ bilateral normal integration (BiNI)
[37] as FSfN in Eq. (1), for which the main justifications are
highlighted as follows: (1) The implementation of BiNI is
optimized with CUDA and supports the inputs of normal
and depth maps, which may further accelerates the SfN
reconstruction when a depth map is available. (2) Addition-
ally, it is one of the most advanced SfN methods, capable
of constraining the continuity of the reconstructed surface
and ensuring stable optimization. It is noted that the depth
ground-truths of the photometric stereo datasets are obtained
using BiNI, while those for the point cloud and mesh datasets
are derived directly from the original 3D meshes.

4.3 Comparison Settings
We have compared our mn3DSSR with several represen-
tative 3DSSR methods, categorizing them into six groups:
(1) point cloud-based methods (denoted by ‘Point’), (2)
mesh-based methods (denoted by ‘Mesh’), (3) voxel-based
methods (denoted by ‘Voxel’), (4) depth-based methods
(denoted by ‘Depth’), (5) normal-based methods (denoted
by ‘Normal’), and (6) other methods (denoted by ‘Other’).
To ensure a fair evaluation, all 2D-based learning methods
(e.g., ‘Depth’, ‘Normal’, and ‘Other’) are trained from scratch
using the official settings and the same number of training
iterations as mn3DSSR.
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TABLE 5: Quantitative comparison results on four normal-based datasets. Multimodal methods with multiple input
images are marked by ‘†’. ‘↑’ means the higher the better, while ‘↓’ means the lower the better. The best results are
highlighted in bold for each dataset in each column.

Scale Type Method
DiLiGenT Dataset LUCES Dataset Harvard Dataset WPS+ Dataset

PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓

×2

Points
Qian2021CVPR [12] 21.5205/0.7537/16.6481/10.4802 25.3958/0.8131/10.8209/4.6622 27.0114/0.8771/9.1227/4.0856 26.5784/0.7741/9.9124/4.5185
Feng2022CVPR [13] 24.8409/0.8573/8.9281/5.1319 28.4936/0.8423/7.2500/3.6336 29.8471/0.8935/5.4839/2.4614 28.8998/0.7816/7.9061/4.0450

He2023CVPR [7] 25.2609/0.8439/8.9925/4.7844 28.4786/0.8556/6.7594/4.4457 31.3664/0.9142/4.5513/1.5815 27.6150/0.8090/8.7612/3.9435

Mesh
Loop2008TOG [14] 23.6890/0.8562/13.7712/6.0359 26.7048/0.9309/8.8377/3.2275 25.9211/0.9325/11.2417/2.6708 26.0932/0.8337/10.2676/4.6271

Liu2020TOG [8] 21.0356/0.7771/14.1434/14.0244 29.2878/0.9373/5.5632/4.0861 26.8023/0.9107/6.1911/9.5300 27.3981/0.8169/8.2536/5.7965
Voxel Shim2023CVPR [16] 28.0317/0.8694/7.6986/2.3947 26.6993/0.8528/6.8165/2.1461 27.1100/0.8738/7.1167/1.8951 27.3601/0.7661/5.3871/1.1561

Depth

Voynov2019ICCV† [17] 25.7812/0.8645/8.7205/2.4052 26.2306/0.9198/9.6347/0.4487 30.3008/0.9406/5.4318/1.6237 25.8256/0.8496/9.9071/0.6447
Deng2021TPAMI† [19] 25.3162/0.8253/10.1997/1.8397 27.7277/0.8776/5.9519/0.3938 27.2236/0.8890/6.6401/1.4593 28.0729/0.8198/6.4739/0.6859

Zhao2022CVPR† [20] 24.5019/0.8199/11.1954/1.1523 24.4583/0.8387/7.7851/0.3780 22.8610/0.8600/9.2004/1.6434 25.6361/0.7638/7.8814/0.6589
Metzger2023CVPR† [10] 26.9412/0.8469/7.8396/1.2309 28.6380/0.8581/5.5886/0.4200 27.7262/0.8629/6.3207/1.4351 29.3251/0.8342/5.8326/0.6335

Normal

Ju2022IJCV† [43] 23.1065/0.8319/14.7224/5.8263 20.0419/0.8247/19.6390/10.4813 31.0314/0.9608/6.1599/3.3774 26.8583/0.8367/10.1528/4.6685
Xie2022CVPR† [11] 29.5686/0.9539/2.7782/0.6202 36.7395/0.9869/0.9747/0.3446 39.3625/0.9874/0.9221/0.4195 38.2878/0.9585/1.9099/0.5155
Xie2023IJCAI† [23] 29.5122/0.9556/2.6582/0.5192 37.0027/0.9886/1.1021/0.3016 39.8172/0.9883/0.9033/0.3898 38.7200/0.9591/1.9046/0.4033

Ours† 30.0964/0.9653/2.2177/0.4792 37.8117/0.9904/0.9106/0.2014 39.9253/0.9894/0.9015/0.2817 39.1803/0.9603/1.8625/0.2623

Other

Dong2016TPAMI [4] 28.7417/0.9490/3.1792/0.8159 36.0270/0.9850/1.1318/5.1583 38.3080/0.9864/1.0522/1.3647 38.0379/0.9572/1.9538/7.5054
Zhang2018ECCV [58] 29.2855/0.9536/2.8439/0.5010 36.4213/0.9866/0.9747/0.3087 38.8861/0.9868/0.9471/0.3454 38.4605/0.9589/1.8959/0.4184
Zhang2021TPAMI [5] 29.1753/0.9518/2.9009/0.5328 36.2576/0.9862/1.0141/0.3245 38.5769/0.9864/0.9569/0.3665 38.3391/0.9588/1.9096/0.4911

Chen2021CVPR [59] 26.2368/0.9212/4.3759/0.7457 33.5741/0.9791/1.4287/0.3557 33.9233/0.9758/1.4672/0.3258 36.4797/0.9542/2.0941/0.4106
Ma2022TPAMI [42] 25.7202/0.9114/5.8661/2.1216 33.0455/0.9766/2.8939/2.1873 32.8075/0.9716/2.8809/2.7745 32.8602/0.9222/3.9467/3.8088

Saharia2023TPAMI [6] 25.2859/0.8968/5.7538/1.5450 32.1990/0.9626/2.6178/1.5501 32.4225/0.9610/2.3954/1.5745 29.5368/0.7763/6.2832/1.7206
Zamir2023TPAMI [60] 28.3680/0.9459/3.2054/1.0574 35.6948/0.9846/1.0785/0.3968 36.8507/0.9841/1.0428/0.4628 38.3083/0.9579/1.9308/0.5581

Chen2023CVPR [40] 29.9392/0.9576/2.7236/0.4848 37.2532/0.9881/0.9942/0.2536 39.4886/0.9878/1.0232/0.3013 38.8492/0.9599/1.9038/0.3251
Li2019CVPR† [24] 29.9861/0.9592/2.7348/0.5248 36.5975/0.9868/1.0311/0.4327 39.6884/0.9889/0.9567/0.4356 38.8153/0.9592/1.9113/0.5371

Deng2021TIP† [61] 27.2352/0.9346/3.7392/0.6016 34.5740/0.9826/1.2210/0.4908 34.4011/0.9802/1.2171/0.3861 36.6442/0.9567/2.0492/0.3820
Georgescu2023WACV† [25] 28.7764/0.9461/3.2204/0.4913 35.4533/0.9835/1.1103/0.2901 39.5173/0.9886/0.9032/0.2868 38.1612/0.9574/1.9345/0.3913

×4

Points
Qian2021CVPR [12] 19.4619/0.6735/22.7640/12.4302 23.9298/0.8271/12.3992/5.2151 23.8567/0.8335/12.9725/7.7488 23.7155/0.7129/12.9399/5.0828
Feng2022CVPR [13] 22.6214/0.7716/13.6446/8.7235 27.1583/0.8423/7.9873/3.5863 27.5179/0.8863/7.0508/4.7806 26.7534/0.7734/9.0821/2.6533

He2023CVPR [7] 23.8644/0.8089/10.5820/6.5163 28.8689/0.8678/6.3430/2.8543 29.9116/0.9159/5.0185/2.3387 26.0900/0.7732/9.4049/2.8089

Mesh
Loop2008TOG [14] 21.3994/0.7698/17.1752/10.6798 25.8076/0.8930/8.8072/4.2971 24.8308/0.8984/12.1518/6.4080 25.4176/0.7944/10.7641/3.6463

Liu2020TOG [8] 20.0684/0.6989/16.8268/14.3957 22.6429/0.4944/15.4329/2.3094 24.2402/0.6128/11.3384/10.0990 27.1892/0.8024/8.0731/4.4842
Voxel Shim2023CVPR [16] 26.4087/0.8244/9.1314/2.5167 24.3759/0.7831/9.0512/3.1556 26.6625/0.8505/8.7521/2.9069 25.1194/0.7209/7.5280/1.6833

Depth

Voynov2019ICCV† [17] 25.2444/0.8456/9.4351/2.5317 26.0950/0.9076/9.8388/0.5438 30.2157/0.9340/5.5844/2.6285 25.9591/0.8398/9.9270/0.8415
Deng2021TPAMI† [19] 24.3490/0.7959/12.0763/1.8249 25.9906/0.7993/7.8407/0.4624 26.6179/0.8571/7.5854/2.5280 25.4388/0.7217/8.9398/0.7081

Zhao2022CVPR† [20] 26.0160/0.8242/9.4762/0.7470 27.8537/0.8389/6.3721/0.4172 27.8165/0.8760/6.4804/2.4598 27.7418/0.7554/7.0776/0.6842
Metzger2023CVPR† [10] 24.2559/0.7208/11.5112/0.7523 26.0775/0.7384/8.1720/0.4604 25.9317/0.7668/8.1994/2.4324 27.4071/0.7265/7.5291/0.6494

Normal

Ju2022IJCV† [43] 23.6945/0.8169/14.3491/5.3658 20.5209/0.8193/21.1528/10.9605 31.7100/0.9563/5.9421/3.3935 25.8775/0.7927/11.1832/4.5518
Xie2022CVPR† [11] 27.8224/0.9156/4.4862/1.1880 33.9617/0.9614/2.0019/0.4984 35.8632/0.9726/1.4867/0.5728 34.8750/0.9042/3.0366/0.6762
Xie2023IJCAI† [23] 27.1040/0.9193/4.1405/0.9460 34.3098/0.9670/2.0200/0.4215 36.0767/0.9741/1.4306/0.4462 35.1734/0.9104/3.0038/0.5727

Ours† 28.7131/0.9290/3.7079/0.6770 35.7181/0.9723/1.6818/0.3813 36.2563/0.9784/1.2877/0.4050 35.5205/0.9120/2.8670/0.5234

Other

Dong2016TPAMI [4] 25.1860/0.8861/5.8101/1.4976 32.4057/0.9508/2.4634/7.0355 33.0354/0.9645/1.8742/2.7786 33.3222/0.8964/3.2684/9.4412
Zhang2018ECCV [58] 25.8061/0.9001/5.2445/0.8978 32.9987/0.9594/2.0921/0.4615 34.0208/0.9684/1.6499/0.4875 34.3417/0.9031/3.0691/0.6060
Zhang2021TPAMI [5] 25.1623/0.8925/5.6062/0.8816 32.9208/0.9594/2.0792/0.4516 33.5749/0.9678/1.6468/0.4804 33.7713/0.9006/3.1508/0.7009

Chen2021CVPR [59] 23.9179/0.8684/7.1466/1.2134 31.2852/0.9519/2.6992/0.8033 31.3168/0.9577/2.4145/1.0713 33.2212/0.8938/3.6183/1.7222
Ma2022TPAMI [42] 25.1041/0.8533/8.5745/3.3527 30.9190/0.9213/4.9812/2.7102 31.9418/0.9470/4.1858/4.3094 31.0938/0.8342/5.2829/3.1220

Saharia2023TPAMI [6] 25.3546/0.8377/8.5486/4.8608 31.5897/0.9057/5.0092/3.3019 32.2972/0.9231/4.6888/3.6931 30.5059/0.7965/5.8525/3.6009
Zamir2023TPAMI [60] 26.3604/0.9009/5.1851/1.3666 33.7176/0.9583/2.1165/0.4545 35.2186/0.9700/1.5926/0.5277 34.8140/0.9024/3.0810/0.5602

Chen2023CVPR [40] 26.8292/0.9119/4.7237/0.8484 34.1865/0.9661/1.9916/0.4920 35.2483/0.9725/1.5995/0.4812 34.7780/0.9075/3.0185/0.6914
Li2019CVPR† [24] 26.7922/0.9086/4.8960/0.8713 33.5816/0.9598/2.0735/0.4642 35.0161/0.9708/1.5974/0.4894 34.6881/0.9042/3.0344/0.5569

Deng2021TIP† [61] 26.0174/0.9057/5.1768/0.8069 33.1432/0.9613/2.1834/0.4992 34.2250/0.9707/1.6862/0.4755 34.3588/0.9069/3.2309/0.5932
Georgescu2023WACV† [25] 26.1868/0.8946/5.6397/1.1730 32.4522/0.9516/2.5479/0.6621 35.1024/0.9685/1.8641/0.8663 34.1142/0.9001/3.2489/1.0604

×8

Points
Qian2021CVPR [12] 16.9014/0.6000/31.2461/13.3988 22.0753/0.8089/16.3038/7.7652 21.5358/0.7961/17.2581/9.9125 19.0508/0.5775/26.3291/11.0666
Feng2022CVPR [13] 19.9236/0.6903/20.8992/11.3735 24.4549/0.8214/11.0594/6.4862 23.5167/0.8311/12.5423/8.8582 25.1123/0.7555/11.5991/1.2533

He2023CVPR [7] 21.0649/0.7110/16.3457/9.0166 25.8029/0.8399/8.5403/5.7959 26.6067/0.8719/8.0658/5.5851 24.9251/0.7468/10.5306/3.9372

Mesh
Loop2008TOG [14] 19.1102/0.6879/22.6620/12.3683 24.1792/0.8472/10.9330/7.3818 23.1042/0.8544/14.2458/9.5637 24.1412/0.7534/12.1212/6.0607

Liu2020TOG [8] 18.4508/0.6713/22.2178/14.5972 24.2564/0.6024/11.5519/6.2898 23.6396/0.7544/10.1586/12.7474 24.8277/0.6448/11.0250/5.5614
Voxel Shim2023CVPR [16] 20.1724/0.6133/19.7176/4.2958 21.2187/0.7022/16.6011/3.4408 21.3996/0.7190/15.3591/3.5065 22.0704/0.6650/13.1685/2.6224

Depth

Voynov2019ICCV† [17] 24.3711/0.8029/11.3918/2.6537 25.6484/0.8696/10.6182/1.2231 29.4428/0.9092/6.2227/3.5769 20.3142/0.4840/17.6697/0.9027
Deng2021TPAMI† [19] 22.4909/0.7512/14.9900/2.5119 23.6757/0.6695/11.6895/0.4948 25.8947/0.8439/8.6121/3.6068 23.8492/0.6218/10.4165/0.8207

Zhao2022CVPR† [20] 22.8280/0.7262/14.2287/1.9137 25.7689/0.8209/8.0283/0.4200 26.0626/0.8546/8.0135/3.5380 26.1740/0.7253/8.2435/0.8027
Metzger2023CVPR† [10] 22.1654/0.6631/14.5418/1.9036 25.3585/0.7777/8.4643/0.4183 25.0190/0.7899/8.9110/3.4506 26.7641/0.7190/8.0038/0.7867

Normal

Ju2022IJCV† [43] 20.0871/0.7158/21.6305/6.5890 19.6450/0.7796/23.4022/11.4969 28.7485/0.9105/8.2786/3.8103 25.9611/0.7780/10.9498/4.4978
Xie2022CVPR† [11] 25.0843/0.8393/8.0426/2.3772 31.5689/0.9115/3.7768/0.6222 33.2322/0.9480/2.4416/0.5620 31.9214/0.8464/4.3476/0.7362
Xie2023IJCAI† [23] 25.2703/0.8423/8.0434/1.9133 31.4897/0.9172/3.7653/0.5306 33.5175/0.9542/2.2767/0.4802 32.1371/0.8522/4.1615/0.6376

Ours† 25.7237/0.8625/7.1961/1.8227 32.2302/0.9221/3.4651/0.3957 34.0295/0.9558/2.1642/0.3903 32.6014/0.8607/3.9955/0.4627

Other

Dong2016TPAMI [4] 22.3600/0.7986/9.8243/3.5007 29.0747/0.8911/4.4773/9.0862 30.5524/0.9286/3.0934/4.4478 30.2180/0.8261/4.8554/10.4912
Zhang2018ECCV [58] 23.0081/0.8139/9.0414/2.0897 30.0082/0.9099/3.9646/0.5352 31.0623/0.9434/2.6928/0.5913 31.1540/0.8467/4.3909/0.6581
Zhang2021TPAMI [5] 22.6106/0.8113/9.3422/2.0341 29.7349/0.9068/4.0889/0.5316 30.6502/0.9404/2.8075/0.5147 30.9765/0.8447/4.4534/0.6886

Chen2021CVPR [59] 22.5603/0.8109/9.8191/1.9706 29.5980/0.9066/4.0774/0.4327 30.2652/0.9377/2.9600/0.4582 30.8966/0.8420/4.5104/0.7379
Ma2022TPAMI [42] 21.2590/0.7354/16.1192/8.4633 25.8630/0.8311/9.8113/4.9456 26.5519/0.8875/8.6186/7.0718 26.2264/0.7426/9.4538/7.1149

Saharia2023TPAMI [6] 24.6408/0.7985/9.9772/3.4295 30.4030/0.8507/5.8307/1.6300 32.3771/0.9060/3.9114/1.6186 30.1325/0.7771/6.0019/1.6160
Zamir2023TPAMI [60] 23.9001/0.8220/8.8270/2.8057 30.3411/0.9048/4.0399/0.6615 32.0807/0.9406/2.7081/0.6791 31.6386/0.8393/4.6032/1.5153

Chen2023CVPR [40] 23.9123/0.8337/8.5006/1.9669 30.8567/0.9145/3.7527/0.5374 32.3350/0.9493/2.4624/0.5574 31.7032/0.8526/4.2188/0.5343
Li2019CVPR† [24] 23.4429/0.8209/9.0796/1.9885 29.8536/0.9058/4.0870/0.5756 30.1759/0.9386/2.9066/0.5516 31.2784/0.8472/4.3786/0.5535

Deng2021TIP† [61] 24.0620/0.8318/8.3685/2.3549 30.5195/0.9073/3.9345/0.6036 30.1044/0.9404/2.8382/0.6794 31.6936/0.8463/4.3476/0.6529
Georgescu2023WACV† [25] 22.7995/0.8023/9.8721/2.3170 29.0951/0.8958/4.5168/0.9210 30.9109/0.9352/2.9789/0.8344 30.7917/0.8381/4.6318/0.9310

• For point cloud-based methods, we select three learning-
based methods: Qian2021CVPR [12], Feng2022CVPR [13],
and He2023CVPR [7]. In the experiment, we have sampled
3D objects into point clouds while ensuring that the
overall number of points is comparable to that of the
normal or depth pixels. We first apply these three methods
and then reconstruct the upsampled point clouds into a
mesh surface. Finally, we render the reconstructed meshes
back into depth and normal maps for evaluation.

• For mesh-based methods, we select a widely used classic

mesh subdivision method Loop2008TOG [14] and a recent
learning-based method Liu2020TOG [8]. It is important
to note that Liu2020TOG requires closed 3D meshes.
Therefore, we utilize the extrude operation in the PyVista
to create watertight test meshes.

• For voxel-based methods, we select a diffusion-based
generative method Shim2023CVPR [16]. We have fine-
tuned the super-resolution stage based on a pre-trained
model and utilized the PySDF library to convert the test
data into voxel-shaped signed distance fields (SDF). Due
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Fig. 9: Visual comparison for the ×8 setting on WPS+ dataset. ‘GT’ means the ground-truth surface, as highlighted in the
red box. It can be observed that the micro geometric structures on the Carving, the leaf stems on the Leaf, and the natural
strip-like texture on the Butterfly are better restored by the proposed method.

to substantial storage and computational requirements,
we crop all 3D surfaces into 64×64 patches during both
fine-tuning and testing. Finally, SDF-based voxels are
reconstructed and reassembled into 3D meshes.

• For depth-based methods, we choose three cutting-edge
DSR techniques: Voynov2019ICCV [17], Zhao2022CVPR
[20] and Metzger2023CVPR [10]. These methods require
high-resolution RGB images, which is incompatible with
our setting. To ensure a fair comparison, we upsample
the low-resolution RGB images using a recent 2DISR [40].
When calculating the evaluation metrics, we estimate
normal maps from the enhanced depth images through
finite difference and vector normalization.

• For normal-based methods, we compare our mn3DSSR
with multimodal normal-based methods Xie2023IJCAI
[23] and Xie2022CVPR [11]. Considering the close relation-
ship between our proposed framework and photometric
stereo-based surface reconstruction, we have also extended
Ju2022IJCV [43] to our setting for comparison, combining
their super-resolution method [22].

• For other methods, considering that 2DISR methods can
also be adapted to our scenario by replacing RGB images
with normal maps, we have included comparisons with
representative 2DISRs. We further classify them into
unimodal and multimodal categories:
1) For unimodal 2DISRs, we have selected the first

convolution-based method Dong2016TPAMI [4],
channel attention-based method Zhang2018ECCV [58],
dense connection-based method Zhang2021TPAMI [5],
GAN-based method Ma2022TPAMI [42], diffusion-
based method Saharia2023TPAMI [6], attention
mechanism-based networks Chen2021CVPR [59],
Zamir2023TPAMI [60], and the current leading method
Chen2023CVPR [40].

2) For multimodal 2DISRs, we choose Li2019CVPR [24],
Deng2021TIP [61], and Georgescu2023WACV [25] to rep-
resent hybrid fusion methods across different domains.
Since these methods primarily accept two input modal-
ities, we use the normal map as the main modality and
the brightest RGB images as the auxiliary modality to
the 3DSSR task.

4.4 Performance Comparisons
4.4.1 Quantitative Performance
To thoroughly demonstrate the performance comparison
between our mn3DSSR and 24 representative methods,
we have conducted experiments on four normal-based
benchmark datasets. As shown in Table 5, point cloud-based
methods [7], [12], [13] and mesh-based methods [8], [14]
generally yield poorer results compared to normal-based
methods [11], [23] and depth-based methods [17], [20]. This
discrepancy can primarily be attributed to the sparsity and
irregularity of point cloud and mesh representations, which
hinder the learning of intricate geometric features. Voxel-
based method [16] also produces suboptimal results, which
can be attributed to its restricted resolution, hindering the
effective modeling of long-range interactions.

Depth-based methods [10], [17], [20] typically achieve
promising performance, highlighting the advantages of uti-
lizing 2D data representations. However, despite leveraging
RGB information as guidance, depth-based methods still
face challenges in improving super-resolution performance
in terms of four quality metrics. For normal-based meth-
ods, Ju2022IJCV [43] effectively recovers certain geomet-
ric details from a substantial number of low-resolution
multi-illumination RGB images. Nonetheless, due to the
inherent complexities of photometric stereo-based surface
reconstructions, the resulting normal maps often exhibit
significant discrepancies from the ground-truth. In contrast,
Xie2022CVPR [11] and Xie2023IJCAI [23] utilize multimodal
information to enhance the effectiveness of 3DSSR, achiev-
ing superior performance compared to existing methods.
Meanwhile, our proposed mn3DSSR achieves state-of-the-
art results across various scaling ratios.

4.4.2 Qualitative Performance.
To demonstrate visual performance, we have provided
the 3DSSR results on four normal-based datasets. Fig. 9
shows typical enhanced examples from the WPS+ dataset.
As observed, our mn3DSSR is capable of effectively re-
covering complex textures while being less susceptible
to noise introduced during photometric stereo acquisition.
In contrast, other methods struggle to recover sharp ge-
ometric structures (e.g., He2023CVPR) or produce dis-
torted details (e.g., Liu2020TOG, Metzger2023CVPR, and
Zhang2021TPAMI).
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Fig. 10: Visual comparison for the ×8 setting on the LUCES dataset. ‘GT’ means the ground-truth surface, as highlighted
in the red box. It can be observed that fine-grained details like the intricate patterns on the Buddha, the tiles on the House,
and the carved text on the Queen are better restored by the proposed method.
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Fig. 11: Visual comparison for the ×8 setting on the Harvard dataset. ‘GT’ means the ground-truth surface, as highlighted
in the red box. It can be observed that surface textures on the Turtle, engraved lines on the Scholar, and eyes of the Cat are
better recovered by the proposed method.
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Fig. 12: Visual comparison for ×8 setting on the DiLiGenT dataset. ‘GT’ denotes the ground-truth normal. Heatmaps
show MAE in the range (0◦, 45◦) for better comparison. Due to limited geometric complexity in DiLiGenT, we highlight
four challenging samples: buddha, harvest, pot1, and reading. Our method better preserves edge details with lower errors.

Fig. 10 depicts the super-resolution results on the LUCES
dataset, which contains more artificial objects and precise
ground-truth normals. It can be seen that the proposed
mn3DSSR successfully restores regular textures, whereas
other methods produce erroneous patterns. Among the
compared methods, Ju2022IJCV is difficult to recover basic
geometric shapes due to the influence of non-Lambertian
materials and near-field lighting effects. Other methods
(e.g., Chen2023CVPR and Deng2021TIP) are affected by
aliasing effects and tend to produce erroneous patterns.

Fig. 11 shows the super-resolution results on the Harvard
dataset. It can be observed that for the fine incised lines
on these enhanced samples, our mn3DSSR achieves sharper

and more accurate restorations compared to other methods.
In contrast, existing methods either produce subtle non-
existent textures (e.g., Liu2020TOG and Metzger2023CVPR)
or overly smooth results (e.g., Saharia2023TPAMI and
Chen2023CVPR).

Fig. 12 presents error maps for a detailed visualization
on the DiLiGenT dataset. Although the DiLiGenT dataset
has a much smaller sample size and smoother surfaces, our
mn3DSSR still restores more accurate geometric structures
compared to other methods, verifying its strong general-
ization capability. Compared to our method, most of the
compared methods exhibit large overall restoration errors.
For example, Xie2022CVPR and Xie2023IJCAI achieve better
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TABLE 6: Ablation study of normal, RGB, and depth
modalities. The ‘-’ symbol indicates that the corresponding
modality is replaced with normal maps. Four quality met-
rics are obtained under the ×4 setting on the DiLiGenT.

Normal RGB Depth PSNR SSIM MAE MRDE
✓ - - 27.1924 0.9122 4.5054 0.9274
✓ ✓ - 28.0503 0.9205 3.9200 0.8703
✓ - ✓ 27.8570 0.9167 4.1053 0.9188
✓ ✓ ✓ 28.7131 0.9290 3.7079 0.6770

results but still incur large errors in geometric details.
In summary, these presented visual results demonstrate

the superiority of our mn3DSSR for normal-based 3DSSR
tasks. The ability of our method to recover intricate textures,
mitigate acquisition noise, and maintain accurate geometric
structures across four normal-based datasets highlights its
effectiveness and robustness.

4.5 Ablation Study
In this section, we evaluate both the individual and com-
bined contributions of different modalities, as well as the
specially designed network modules in our mn3DSSR.

4.5.1 Modality Ablation
To thoroughly demonstrate the rationale behind our modal-
ity selection, we have conducted the experiments on various
combinations of modalities on DiLiGenT under the ×4 set-
ting. In the experiments, we replace the additional modality
with the normal modality, without altering the network
architecture, the results of which are listed in Table 6. As
seen, the results indicate that the modalities chosen in our
mn3DSSR are both reasonable and effective, with the best
performance achieved when all three modalities are utilized.

Notably, using RGB alone can yield better performance
than using depth alone, as reflected in the angular and
relative depth error metrics. This is primarily because RGB
information tends to correlate more strongly with surface
normals, as lighting variations in multi-illumination images
encode rich geometric cues directly influenced by surface
orientation. In contrast, the depth modality often provides
less fine-grained detail for accurately inferring normals,
particularly when it is low-resolution or noisy.

4.5.2 Module Ablation
To verify the effectiveness of the MPS, MSTA, and MSF mod-
ules, we have further conducted additional experiments
with the same settings as described above. Five independent
experiments have been carried out as shown in Table 7,
where the selected (not selected) modules are represented
by the check-mark symbol ‘✓’ (‘-’).

To validate the effectiveness of MPS, we have replaced
the brightest and darkest RGB images with the average one.
For the normal modality, we have omitted the frequency
separation process (e.g., Nlr = Nt

lr + Ns
lr), while for the

depth modality, we have removed the normalization and
position encoding processes. To evaluate the effectiveness
of MSTA and MSF, we have substituted them with simple
concatenation and stacking of RBs, ensuring that the model
size is comparable to the original. As shown in Table 6, the
best results are obtained when all three modules are utilized.

TABLE 7: Ablation study of MPS, MSTA, and MSF
Modules. The ‘-’ symbol indicates that the corresponding
module is replaced with residual blocks having a similar
number of model parameters on the ×4 DiLiGenT.

MPS MSTA MSF PSNR SSIM MAE MRDE
- - - 27.9204 0.9205 4.0013 0.8990
✓ - - 27.9833 0.9206 3.9141 0.8500
✓ ✓ - 28.4257 0.9248 3.8667 0.7015
✓ - ✓ 28.3062 0.9237 3.9025 0.7949
✓ ✓ ✓ 28.7131 0.9290 3.7079 0.6770

TABLE 8: Performance of the subpixel-translation on the
super-resolution of surface normals. Two quality metrics
are obtained under the ×4 setting on the DiLiGenT.

Translation Level Chen2023CVPR [40] Ours
MAE MAEtrans MAE MAEtrans

0 pixel 4.7237 0.0000 3.7079 0.0000
1/4 pixel 4.7798 3.0283 3.7409 2.4353
2/4 pixel 4.9338 3.9015 3.7311 3.0993
3/4 pixel 4.7358 3.1646 3.7309 2.4146
4/4 pixel 4.8729 0.6961 3.7468 0.4083

4.6 Subpixel-translation Analysis

To evaluate subpixel-translation consistency, we have con-
ducted experiments under the ×4 setting on the DiLiGenT,
as shown in Table 8. We adopt the MAEtrans to measure
the angle difference between the outputs before and after
subpixel-translation, where a smaller value indicates greater
consistency. As seen, integer-pixel translations preserve the
aliasing pattern in the input normal maps, while fractional
translations (e.g., 1/2-pixel shifts) result in the largest dis-
crepancies due to altered aliasing. Nonetheless, our method
consistently yields lower MAE and MAEtrans values than
the recent 2DISR method Chen2023CVPR, demonstrating
improved robustness to subpixel misalignments.

4.7 Hyper-parameter Analysis

To demonstrate the impact of loss function weights, we
have employed a greedy approach to select the optimal
values for different loss terms by iteratively searching at
certain intervals. Specifically, we first fix the weight of the
normal pixel loss at 1 and then search for the optimal
weights for λweight

curl , λregular
curl , and λalign. After determining

the optimal value for λweight
curl , we repeat the process for

λregular
curl as well as for λalign. The overall results of three

hyper-parameters are provided as illustrated in Fig. 13. In
addition, we have the following observations based on our
extensive experimental results:

• λweight
curl accelerates the convergence speed, excessively

large weights may lead to unstable training.
• λregular

curl imposes certain constraints on the restoration
noise in the output normals, but large weights can result
in overly smooth super-resolution results.

• λalign is beneficial for model training, but it may compete
with the primary super-resolution task, leading to perfor-
mance degradation when assigned high weights.

Therefore, we choose λweight
curl = 0.25, λregular

curl = 0.1, and
λalign = 0.5 to train our mn3DSSR.
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Fig. 13: Effects of the hyper-parameter sensitivity for
λweight

curl , λregular
curl , and λalign. The MAE and MRDE results

are computed under the ×4 setting on our WPS+ dataset.

TABLE 9: Effects of the cosine loss, the ℓ1 loss, and the
proposed normal pixel loss Lpix. Four quality metrics are
obtained under the ×4 setting on the DiLiGenT.

loss PSNR SSIM MAE MRDE
cosine 28.2097 0.9229 3.9826 0.8261

ℓ1 28.1144 0.9221 3.9524 0.8001
Lpix 28.3299 0.9280 3.7661 0.7399

Lpix+L∗
curl+L

∗
align 28.7131 0.9290 3.7079 0.6770

In addition, we have also conducted additional ablation
studies to evaluate the performance gains of the proposed
normal pixel loss Lpix compared to traditional ℓ1 and
cosine losses. As seen in Table 9, it shows that using only
Lpix yields consistently better performance than using either
the ℓ1 or cosine loss alone.

4.8 Complexity Analysis
To illustrate the model size and computational complex-
ity, we have further carried out additional experiments
comparing our mn3DSSR with other approaches. Since
different models have significant differences in network
architecture, to maintain comparison fairness, we primarily
evaluate the storage and computational costs with represen-
tative unimodal and multimodal super-resolution methods.
Specifically, we calculate the parameter count (PARAMS)
and the number of multiplication and addition operations
(Mult-Adds) with the torchinfo library to evaluate the space
and time complexity.

As shown in Fig. 14, our mn3DSSR demonstrates ac-
ceptable computational overhead when compared to re-
cent advanced multimodal 3DSSR methods. Notably, our
method significantly reduces the computational complexity
compared to Xie2022CVPR. While it may not have the
fewest model parameters compared to other 2DISR models,
our mn3DSSR achieves one of the best results, effectively
balancing computational overhead and super-resolution
performance.

4.9 Validation of Other 3D Data Representations
As illustrated in Fig. 2, our mn3DSSR can be applied to a
wide range of 3D representations by data conversion. To
validate its scalability, we have further conducted compar-
isons across point cloud, mesh, and depth datasets.

4.9.1 Evaluation on Point Cloud Dataset
For point cloud representation, we have performed exper-
iments following the validation method suggested by [13]
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Fig. 14: Complexity comparison of model parameters
and computations. The x-axis denotes the multiplication-
addition operation (Mult-Adds), while the y-axis represents
PSNR, SSIM, MAE, and PARAMS, respectively. Results are
computed under the ×4 setting on the DiLiGenT.

on the Sketchfab2 dataset [13]. To convert point cloud data
into multimodal images suitable for mn3DSSR, we use point
splatting to synthesize the required normal, depth, and RGB
images from 64 viewpoints for each sample. It is noted that
since Sketchfab2 does not provide RGB information, we use
the default diffuse white material to render the RGB image.

To conduct a unified evaluation, we convert the results
of all comparison methods into meshes and render them
as multi-view images for quantitative metric calculations.
Specifically, for the proposed mn3DSSR, we use the Su-
perNormal [62] to reconstruct a complete mesh from the
enhanced multi-view normal maps. For other methods, we
employ the neural kernel surface reconstruction (NKSR)
[63] to generate an enhanced mesh. From Fig. 15 and
Table. 10, it can be observed that our mn3DSSR effectively
restores continuous and smooth surfaces from sparse point
clouds, while other point cloud-based methods struggle to
recover finer geometric structures due to their inability to
utilize normal information. It is worth noting that due to
the limited number of Sketchfab2, we fine-tune mn3DSSR
on Google Scanned Objects dataset using the same training
samples and process meshes using the same method as
described in Section 4.9.2, but resample them into point
clouds during data preparation.

4.9.2 Evaluation on Mesh Dataset
For mesh representation, we have validated the generaliza-
tion of our mn3DSSR on the real captured mesh dataset
Google Scanned Objects (GSO) [64], containing high-quality
texture maps. Specifically, we randomly select 500 samples
for fine-tuning and 64 samples for testing, and synthesize
the required normal, depth, and other modalities through
multi-view rasterization.

During testing, we utilize the SuperNormal [62] to recon-
struct a complete mesh from the enhanced normal maps.
Next, we render the reconstructed mesh into normal and
depth maps from six directions (i.e., front, back, left, right,
up, and down) to calculate the evaluation metrics. As shown
in Fig. 15 and Table 10, our mn3DSSR leverages additional
RGB information to recover better geometric details.

4.9.3 Evaluation on Depth Dataset
For depth representation, we have performed additional
experiments on the Digital Image Media Laboratory (DIML)
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TABLE 10: Quantitative comparison results on three different 3D data representations. The average results of mn3DSSR
are provided for three different 3D datasets. “↑” means the higher the better, while “↓” means the lower the better. The best
results are highlighted in bold for each dataset in each column.

Method

Point Cloud Dataset: Sketchfab
×2 ×4 ×8

PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓
Feng2022CVPR [13] 27.1797/0.8922/9.1853/2.3569 27.2716/0.8947/8.8525/2.0369 26.9247/0.8881/9.2709/1.9502

He2023CVPR [7] 28.6677/0.9187/7.2417/1.4316 28.3503/0.9132/7.4939/1.5623 26.0556/0.8683/10.4705/1.9522
Ours 29.3290/0.9338/6.5276/1.2350 28.5316/0.9188/7.3908/1.3059 27.5911/0.9079/8.2345/1.4904

Mesh Dataset: Google Scanned Objects (GSO)
×2 ×4 ×8

PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓
Loop2008TOG [14] 28.3602/0.8815/6.7123/1.3101 26.1830/0.8461/8.6325/1.9182 23.9059/0.8050/11.6647/2.7964

Liu2020TOG [8] 27.9929/0.8855/6.6182/1.3164 26.7629/0.8529/7.7574/2.2238 24.6799/0.8060/10.5905/2.8801
Ours 29.0197/0.8930/6.1005/1.4506 27.6110/0.8680/7.2453/1.8963 26.0434/0.8378/8.9210/2.4913

Depth Dataset: Digital Image Media Laboratory (DIML)
×2 ×4 ×8

PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓
Zhao2022CVPR [20] 26.2097/0.7817/6.9070/0.1487 22.7714/0.5900/11.1449/0.1670 19.9095/0.4890/15.3025/0.4378

Metzger2023CVPR [10] 29.2894/0.9033/4.2398/0.1351 26.8029/0.7740/6.8725/0.1457 23.1542/0.6599/8.8073/0.3157
Ours 31.0789/0.9322/3.1226/0.1363 27.0288/0.7886/6.1761/0.1534 24.4032/0.6793/8.3741/0.2642

GT LR Feng2022CVPR He2023CVPR Ours
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Fig. 15: Visual comparison on point cloud, mesh, depth
datasets. ‘GT’ refers to the ground-truth surface, as high-
lighted in the red box. Fine-grained 3D surfaces are obtained
under the ×8 setting on the Sketchfab, GSO, and DIML.

dataset [65], which is captured using a Time-of-Flight (ToF)
RGB-D camera (Kinect V2). DIML encompasses a wide
range of realistic scenes with relatively high-precision depth
images and aligned RGB images.

In our experiments, we invert the depth values and
obtain the normal modality through finite difference and
vector normalization. For the RGB modality, we replace
the brightest, darkest, and average RGB inputs with the
same RGB image. We fine-tune the proposed model on 800
scenes randomly selected from the DIML training set and
conducted testing on 256 scenes from the testing set. To
ensure a fair comparison, we use upsampled RGB images
as guidance for all depth-based methods.

We compare our mn3DSSR with two advanced depth-
based methods, with the results presented in Fig. 15 and
Table 10. Compared to other depth-based methods, our
model exhibits greater accuracy in local geometric details
and promising overall quality in terms of PSNR, SSIM, and
MAE on normal maps as well as MRDE on depth images.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient multimodal
normal-based framework for 3D surface super-resolution
(mn3DSSR). Compared with the existing state of the arts,
our contributions can be highlighted in three aspects,

including: (i) we have constructed one of the largest normal-
based multimodal dataset, providing a useful resource
for future research; (ii) we have developed a novel two-
branch multimodal alignment module and a multimodal
split fusion module, enabling more efficient and accurate
utilization of texture and shape features; (iii) we have
explored new curl- and alignment-based loss functions,
further improving the model capability to capture fine-
grained details and align multimodal features. Extensive
experiments compared to 24 super-resolution methods
across four different 3D data representations validate the
superiority of our proposed mn3DSSR.

While our framework demonstrates significant improve-
ments in 3D surface super-resolution, several avenues
remain for future exploration. First, mn3DSSR primarily
enhances 3D surfaces for a single view. A new dataset
will be investigated to record panorama object surface in
a single normal map, which could avoid occlusions and
lead to more robust restoration. Second, we see potential
in incorporating large-scale and general-purpose models
to further enhance the super-resolution performance. For
example, advanced large language models (LLMs) could
provide richer multimodal information, improving both
texture and shape feature extraction. Finally, extending the
mn3DSSR framework to address other low-level 3D vision
tasks is another intriguing research direction. For instance,
adapting it to 3D surface denoising or inpainting could
enhance its versatility and applicability to a broader range
of real-world scenarios.
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