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Abstract
Event cameras with bio-inspired neuromorphic sensors are highly
sensitive to brightness changes. When there are moving objects
in a scene under constant lighting, event cameras only record mo-
tion information and output a sequence of events asynchronously.
However, the common flickering light sources, such as fluorescent
or LED lamps powered by alternating current exist in various real-
world scenarios. When operating under a flickering light source,
event cameras output numerous redundant event signals that are
triggered by the flickering effect, which overwhelm the useful sig-
nals that encode motion information. In this paper, we propose
EDeF-Net, an Event streams DeFlickering Network that effectively
leverages the spatio-temporal correlation of event streams by mod-
eling both the inter-channel temporal attention and inter-patch
spatial attention. To facilitate network training and evaluation, we
synthesize the first dataset containing paired flickering and flicker-
free event streams. Moreover, we demonstrate that event streams
filtered by EDeF-Net yield performance improvements on down-
stream applications such as event-based optical flow estimation
and object tracking.
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1 Introduction
Neuromorphic signals from event cameras [4, 25, 30] encode the
brightness changes in a scene, which have emerged as a promis-
ing solution for high-speed and high dynamic range (HDR) visual
sensing, exhibiting unique advantages over traditional frame-based
cameras [11]. Thanks to these advantages, event cameras have been
imposed to versatile tasks ranging from computer vision to robotics
fields [12, 18, 28, 31, 34, 39]. Majority of the existing event-based
algorithms assume a constant lighting condition when capturing
event data, and rely on the events only triggered by motion. Re-
searchers usually regard the motion-triggered events as the valid
signals in these applications, because they encode the critical infor-
mation of moving objects in a scene. However, real-world scenarios
frequently involve flickering light sources, such as fluorescent or
LED lights powered by alternating current (AC). When operating
in such scenarios, event cameras’ high sensitivity to brightness
changes becomes a double-edged sword. On the one hand, the high
sensitivity makes event cameras highly effective to capture fast
motion, on the other hand, it also makes them prone to flickering
effect of some indoor lighting [37]. Consequently, this results in
a mass of redundant and ambiguous event data triggered by the
flickering light source. The flickering issue introduces substantial
noise into the event streams, which degrades the performance of
event-based algorithms.

As show in Figure 1 (a), the event signals record a waving white
board with uniform reflection under a 100 Hz flickering light. The
rapid changes of light intensity trigger a mass of positive and nega-
tive event signals in one flicker cycle. In Figure 1 (b), we can clearly
see the portion of positive events and that of negative events from
the time axis. In the first row of Figure 1 (c), we accumulate and vi-
sualize the events triggered in each flickering cycle into two images
(i.e., light energy increasing portion and decreasing portion). The
following three rows show that some classical filters (e.g., erosion
filter and median filter) perform poorly since they do not take the
crucial temporal pattern of event signals into account. The comb
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Figure 1: (a) A white board moving in front of a flickering
light source. (b) Visualization of the events stream from the
temporal domain. (c) Thefirst row is aflickering event stream.
The following rows show the comparison of the flicker re-
moval results from classical filter algorithms, including ero-
sion filter, median filter, comb filter (EFR [36]), Gaussian
filter (PINK [16]), and the proposed EDeF-Net.

filter-based method (EFR [36]) is restricted to specific scenarios
where the flickering light source is static in the camera’s field of
view.When there are objects moving under a flickering light, events
are triggered by both motion and flicker. It complicates the task
of distinguishing whether an event signal is triggered by motion
(should be preserved) or flicker (should be discarded). Details of
these filter-based methods are presented in Sec. 3.1. The Gaussian
filter-based method (PINK [16]) integrates of period of event signals.
It makes the edges of objects thicker and cannot be redistributed
back to streams.

In this paper, we propose EDeF-Net that leverages the correlation
of event signals in both temporal and spatial domains to solve
the ambiguity of events triggering, as shown in the last row of
Figure 1 (c). We model the temporal repetitive pattern and spatial
sparsity in the flickering event streams. For temporal correlation,
we design amodule that learns the inter-channel attention along the
temporal axis by computing the correlation among events triggered
in different channels. To ensure spatial consistency of the event
signals, we further use another module that takes patch-wise tokens
to learn an spatial attention residual.

For network training, we synthesize a dataset with correspond-
ing flickering and non-flickering event streams using Blender [7]
and an event simulator [17]. We conduct extensive experiments

on both synthetic data and real-world data, demonstrating the
proposed method can effectively filter out the redundant events
triggered by flickering light sources while preserving the valid sig-
nals triggered only by motion. We further verify that the event
streams after flicker removal yield performance improvement in
several down-stream applications, including event-based optical
flow estimation and object tracking. The contributions of this paper
are summarized as follows:

• We propose EDeF-Net, a light-weighted network with spe-
cific attention modules for flicker removal in event streams,
which incorporates the inter-channel temporal correlation
and inter-patch spatial consistency.

• We build the first synthetic dataset with flickering events and
corresponding flicker-free ground truth for flicker removal
in event streams.

• Event streams filtered by EDeF-Net yield better performance
when applied to several down-stream applications, includ-
ing event-based optical flow estimation and object tracking,
which demonstrates the significance and effectiveness of the
proposed method.

2 Related Works
2.1 Video deflickering using conventional

cameras
Flickering artifacts are a prevalent issue in conventional RGB videos,
stemming from various factors. For instance, capturing scene in-
formation with a high-speed camera under flickering light sources
can result in a noticeable global intensity shift among consecu-
tive frames. Delon et al. [8] introduced a local stabilization opera-
tor that acts on frame patches and relies on a similarity measure-
ment. Kanj et al. [19] proposed a local method for flicker removal
based on super-pixels segmentation. Blind video consistency algo-
rithms [3, 10, 22, 23] attempted to enhance the temporal consistency
of videos without the need for specific flickering guidance. Event
cameras possess a significantly high temporal resolution and sensi-
tivity to brightness changes with stream-like data format. Therefore,
developing deflickering algorithms specifically tailored for event
cameras is of vital importance.

2.2 Event signals filtering
We firstly give a brief review on noise removal in event signals. For
background activity noise [20, 27], some approaches such as the de-
velopment of in-chip filters [26] and efficient noise models for real-
time processing [13], neural network-based techniques [2] for event
classification, and the utilization of motion association [35] to en-
hance noise filtering accuracy. Under alternating current-powered
light sources, the flickering effect is obvious and triggers numer-
ous redundant event signals. To eliminate flicker in event streams,
EFR [36] applied a linear comb filter that considers the frequency
of events triggering at each pixel. However, this approach primarily
focuses on flicker removal in static positions (e.g., ceiling lights).
ELIR [33] is a two-stage filtering pipeline that eliminates light in-
terference. However, it needs additional inertial measurement units
(IMUs) to measure the motion polarity. The proposed EDeF-Net
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can successfully deal with the ambiguity of events that are trig-
gered by motion associated with light source flickering without
any additional priors.

3 Proposed Method
In this section, we describe the proposed method, which begins
with formulating the event camera’s signal triggering mechanism
and flicker model of light source power by AC, followed by demon-
strating that a simple polarity offset-based operation cannot solve
the problem.

3.1 Preliminary
Event camera model. The sensor of event camera detects the

brightness changes in a scene asynchronously, instead of recording
the absolute intensity like conventional cameras. The data output
by an event camera is in a stream-like format E = {e𝑖 }𝑁𝑖=1, where
E represents a sequence of event signals and e𝑖 = (𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖 , 𝑝𝑖 ) is
the 𝑖-th event, encoding the timestamp 𝑡𝑖 , coordinates (𝑥𝑖 , 𝑦𝑖 ), and
brightness changing polarity 𝑝𝑖 . The process of event triggering is:

𝑝 =


+1, Δ𝐼

(𝑥,𝑦)
𝑡 ≥ 𝜃

none, Δ𝐼
(𝑥,𝑦)
𝑡 ∈ (−𝜃, 𝜃 )

−1, Δ𝐼
(𝑥,𝑦)
𝑡 ≤ −𝜃

(1)

where Δ𝐼 = log 𝐼 (𝑥,𝑦)
𝑡+Δ𝑡 − log 𝐼 (𝑥,𝑦)𝑡 is the intensity changes in log-

scale during a short time slot Δ𝑡 . Once the intensity changes exceed
a pre-defined threshold 𝜃 , an event signal will be fired. The polarity
𝑝 ∈ {−1, +1} indicates the increase or decrease of intensity values.

Flicker model of alternating current. The AC with a zero-mean
and a stable peak outlet amplitude exhibits a quasi-periodic na-
ture [32]. We define the time interval between two successive zero-
crossings of AC as Δ𝑇 . Then the frequency of AC is 1/(2Δ𝑇 ), be-
cause there are two Δ𝑇 s (i.e., positive and negative voltage) in one
period of AC. A bulb powered by AC goes dark whenever the AC
voltage reaches zero. As a result, it would flicker at twice the AC
frequency. We refer to this flickering period as a cycle C, whose
frequency is 1/Δ𝑇 . Consider a static scene with a flickering light
source, for each pixel, the event signals triggered by flicker follow a
pattern of consecutive “ON-OFF”, where “ON” represents positive
event and “OFF” represents negative event, respectively. Once mo-
tion occurs, the events triggered by moving objects will intervene
in such a flickering pattern in the event stream of each pixel, which
makes it difficult to distinguish which factor the event signals are
triggered from.

Flicker removal by polarity offset and filters. It is straightforward
to think about using the polarity offset to achieve flicker removal,
i.e., counting the number of positive and negative events during
a flickering cycle and making subtraction. However, the number
of positive and negative event signals triggered in one flickering
cycle are different due to the inconsistency in the increasing and
decreasing portions, as illustrated in Figure 1 (b). Existing event
denoising methods [2, 13] mainly consider the background activity
noise from current leakage and temporal fluctuation, which cannot
be directly applied to flicker that appears in a repetitive pattern.

Besides, we have also tried several classical morphological filter-
ing algorithms to filter the events accumulated over a small time
window, as compared in Figure 1 (c). The middle three rows show
the results of filter-based algorithms, which cannot effectively re-
move flickering events (erosion filter), mistakenly remove the valid
motion-triggered events (median filter), or blur the events in the
object edges (EFR [36]), resulting in poor performance. In contrast,
the proposed EDeF-Net not only removes the flickering events, but
also preserves the motion-triggered events.

3.2 EDeF-Net
Event cameras output stream-like data with dense temporal infor-
mation and sparse spatial representation. We propose to analyze
the spatio-temporal correlation of event streams by learning an
inter-channel temporal attention and an inter-patch spatial atten-
tion. The overview of EDeF-Net is illustrated in Figure 2, which is
composed of the temporal attention module (TAtt-M) and the spa-
tial attention module (SAtt-M). To make the output tensors easy to
redistribute back into event streams, we use a stack S(E) ∈ Rℎ×𝑤×𝑐

to represent events triggered in one flickering cycle 𝐶 . EDeF-Net
takes an flickering event stack S(E𝑓 ) as input, and outputs its cor-
responding flicker-free stack S(E𝑚) with only motion-triggered
events.

Inter-channel temporal attention. From the time axis, we can see
the obvious flickering pattern along, which could be modeled by
learning a channel-wise attention map. Inspired by the transposed
self-attention [38], we first map the input stack S(E𝑓 ) to the embed-
ding features F(E𝑓 ) by the channel embedding operation Embed(·),
which is implemented by the 1×1 convolutions:

F(E𝑓 ) = Embed(S(E𝑓 )). (2)

Then the feature maps in each channel are regarded as a sequence
of 𝑐 tokens with dimension of ℎ ×𝑤 . To compute the self-attention
map in channel-wise, we generate the query Q, key K and value V
from each token by a depth-wise convolution. The channel-wise
attention A ∈ R𝑐×𝑐 can be obtained by the matrix multiplication
operation of the reshaped Q and K. The output feature maps after
channel-wise attention is:

X = Conv(V ⊗ A) + F(E𝑓 ),
F̂(E𝑓 ) = Conv(LN(X)) + X,

(3)

where X is the middle features. Conv(·) and LN(·) represent con-
volution and layer normalization [1], respectively. The channel-
wise attention mechanism computes the temporal correlation of an
event stack to get a weighting map, without affecting the spatial
consistency in each channel. The final operation of TAtt-M is the
Hadamard product of the weighting map and input event stack,
which is represented as:

L = S(E𝑓 ) ⊙ UnEmbed(F̂(E𝑓 )), (4)

where L is the latent features output from TAtt-M, and UnEmbd(·)
represents the unembedding operation that maps the output fea-
tures back to the same dimension of the input event stack.

Inter-patch spatial attention. Event streams not only contain the
temporal information with very high resolution, but also encodes
the sparse spatial representations of the scene. Given the latent
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Figure 2: The overall pipeline and detailed architecture of EDeF-Net. The input flickering event stream is firstly stacked along
the time axis. Then the event stack is passed through K temporal attention modules (TAtt-M) and M spatial attention modules
(SAtt-M), which learn the intra-pixel temporal attention and inter-patch spatial attention. Finally, the output event stack is
redistributed back to the event stream with flickering effect being removed.

features L after being processed with temporal attention in TAtt-M,
we aim to model the connections among event signals triggered in
different pixels by learning a spatial attention residual.

As shown in Figure 2, the SAtt-M mainly consists of a spatial
feature extraction layer, followed by several residual swin trans-
former blocks [24] and a reconstruction layer. Since 2D convolution
fuses all the channels together, we therefore apply 3D convolutions
in the spatial feature extraction layer and the final reconstruction
layer, which will not impact the temporal attention figured out in
the previous TAtt-M. The extracted features from L is:

F(L) = 3DConv(L), (5)

where 3DConv(·) represents 3D convolution. After the spatial fea-
ture extraction, we split the tensor into patches, and conduct patch
embedding as well as patch-wise positional encoding, which are
the same as the operations in classical ViTs [5, 9, 14]. The following
operation module is composed of several residual swin transformer
blocks [24] with powerful and efficient modelling ability for visual
information. Then the learned spatial attention residual is added
back to the feature tensor and reconstructed by the 3D convolu-
tional layers. The full operations in SAtt-M is formulated as:

Ŝ(E𝑚) = L + 3DConv(R(F(L) + pep)), (6)

where R(·) represents the residual swin transformer block, and
pep is the patch-wise positional encoding. The values in event
stack Ŝ(E𝑚) output from the SAtt-M is rounded to integers and
redistributed back into a stream by assigning a timestamp for each
event signal. Details of the redistribution method are introduced in
the supplementary material.

3.3 Loss functions
Considering the sparse nature of event signals, which results in
sparse input and output stacks for the network, we define the loss
function as a combination of two parts:

L = Lℓ1 + 𝜆L𝑠 , (7)

where 𝜆 is a weight parameter that balances the two parts. The first
part Lℓ1 is the ℓ1 loss, which directly computes the mean absolute
error (MAE) between the output and ground truth stacks. It helps
to avoid the output stacks becoming excessively smooth, which
violates the sparse characteristics of accumulated event stacks. The
second part L𝑠 represents the sparsity loss, which is designed to
quantify the discrepancy in the number of valid (i.e., non-zero) vox-
els between the prediction and the ground truth, which is defined
as:

L𝑠 =


𝑁 − 𝑁̂




1 , (8)
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Figure 3: Our synthetic dataset creation pipeline consists of a rendering engine in Blender [7] and an event signals simulator [17].
The Blender renders HFR videos with different scenes, objects, moving trajectories, and light energies. Then the event signals
simulator generates event streams according to the input HFR videos.

where N and 𝑁̂ represent the number of valid voxels in S(E𝑚) and
Ŝ(E𝑚), respectively. ∥·∥1 is the ℓ1 distance.

3.4 Dataset preparation
There is no existing large-scale event stream pairs for training
flicker removal models. Therefore, we synthesize a dataset with
flickering event streams as input and the corresponding non-flickering
event streams as the ground truth. The dataset simulation pipeline
is illustrated in Figure 3, which is composed of two stages: HFR
videos rendering and event data simulation.

For the first stage, we use the open source 3D rendering tool
Blender [7] to synthesize HFR videos. The rendering is composed
of four main resources: Scene (i.e., environment), object, moving
trajectory, and light source. To guarantee the diversity of the pro-
posed dataset, we randomly set the environment with texture as
a static background from the SceneNet [15], and randomly select
objects from ShapeNet [6]. The random moving trajectories are set
as the translation and rotation path of different objects. For the light
sources, the flickering energy curves come from the database [32],
which measured the response functions of various bulbs that domi-
nated indoor and nocturnal outdoor lighting. We choose 6 different
indoor bulbs and set 26 key frames in one flickering cycle. Each
video is rendered with 4 flickering cycles, containing 832 frames
with the resolution of 256×256. The flickering frequency of bulbs
occurs in 100 Hz. Since the proposed EDeF-Net accumulates the
events triggered in one flickering cycle as an event stack, it can
deal with scenarios with light sources in different frequencies. For
the corresponding non-flicker lighting, the only difference is the
light energy, which is set to a constant value without fluctuation.

For the second stage, we use an event data simulator [17] to
generate event streams given the HFR videos as input. To improve
the generalization ability of our model to real event signals, we
randomly set the logarithm thresholds with a mean of 0.3 and
standard deviation of 0.05. We synthesize 4420 pairs of flickering /
non-flickering event stacks in total, including 3508 event stacks for
training and the other 912 for testing.

Table 1: Quantitative evaluation of flicker removal in the
format of event stack. ↑ (↓) means the higher (lower) the
better results throughout this paper. The champion results
are marked in bold.

MSE↓ MAE↓ SNR↑ PSNR↑
Erosion filter 0.373 0.215 1.107 18.16
Median filter 0.222 0.153 1.331 22.97
EFR [36] 0.195 0.091 0.531 15.61
EDeF-Net (Ours) 0.157 0.081 2.591 23.13

3.5 Implementation details
During the training process, we split each continuous event stream
into small slices according to the flickering cycles (e.g., under 100
Hz light source, we split 0.01s events into one stack). For each
cycle, both of the flickering and non-flickering event streams are
binned into an 8-channel stack. We have tried stacks with 4 and 16
channels, and found that 4-channel stacks sacrifice more temporal
resolution, leading the output streams to look discrete; 16-channel
stacks can hardly contain sufficient events in each bin, making it
hard for the model to converge. In total, the synthetic 1105 event
streams are split into 4420 event stacks, including 3508 pairs as the
training set and 912 pairs for testing. The proposed EDeF-Net is
a light-weighted network with only 1.051 M parameters, which is
implemented by Pytorch [29]. We train it with a batch size of 2 on
an NVIDIA 4090 GPU. 60 epochs make the model converge, which
take around 48 hours. We use the Adam optimizer [21] with an
initial learning rate of 10−3, which linearly decays to zero after the
first 50 epochs.

4 Experiments
4.1 Quantitative evaluation on synthetic dataset
Since we have the non-flickering event streams as the ground truth
in the synthetic dataset, we can conduct quantitative evaluation on
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from the state-of-the-art methods (EFR [36] and PINK [16]) and the proposed EDeF-Net (Ours) are shown below the flickering
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the event stacks. Several recognized metrics are applied for eval-
uation, including mean square error (MSE), mean absolute error
(MAE), signal-to-noise ratio (SNR), and peak signal-to-noise ratio
(PSNR). In SNR metrics, the noise part is computed from the dif-
ference between ground truth and the predicted event stacks. The
results are listed in Tab. 1. We compare with two morphological
filtering algorithms (i.e., erosion filter and median filter) and the
state-of-the-art method EFR [36]. The proposed EDeF-Net achieves
better performance on the synthetic dataset.1

4.2 Qualitative comparison on real event
sequences

We visualize the event streams as frame sequences by integrating
the event signals triggered in each semi-flickering cycle (i.e., Con

i
and Coff

i ). There are three real-data examples shown in Figure 4.
The input sequences are severely affected by the flickering effect
with lots of positive events accumulated during Con

i and negative
1Due to the integration along time axis in PINK [16], we can only conduct qualitative
evaluation on it.

events during Coff
i . The comparing algorithm EFR [36] focuses on

flickering pattern in static pixels, which hampers its performance in
scenarios where both flicker- and motion-triggered events appear
on the same object. It is difficult for EFR [36] to clearly figure out
whether the events should be filtered or not, which introduces
severe blurry artifacts as shown in the second column of each
sample in Figure 4. PINK [16] needs to integrate events along time
that makes it difficult to redistribute back to event streams. The
integration also introduce thick edges.

The proposed EDeF-Net can effectively filter out redundant
events triggered by flickering light source and only preserve valid
events triggered by motion, which solves the ambiguity of event
triggering. The preserved events contain clear edges of the moving
objects without interfered by flickering light source. Moreover, the
noise on the background caused by flickering light is visible in the
flickering input and results from EFR [36], but nicely removed in our
results. In the following experiments, we conduct two event-based
down-stream applications, including optical flow estimation and
object tracking, to verify that after removing the flickering events,
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Figure 5: The results of dense optical flow estimation from BFlow [12]. The gray arrows indicate the actual moving directions
in each case.

we can improve the performance of existing algorithms on scenar-
ios with flickering light source. Please refer to the supplementary
material for more visual results.

4.3 Downstream applications
Optical flow estimation. We compare the dense optical flow es-

timation results from the raw flickering events, the event streams
filtered by EFR [36], and the streams output from the proposed
EDeF-Net on several real-captured event sequences, as shown in
Figure 5. The BFlow [12] model is used as the method for dense
optical flow estimation. We can infer from the flow maps in Fig-
ure 5 that the results from EDeF-Net show sharper edges (the top
two cases) of the objects, which is crucial to identify the moving
objects and their moving direction. Besides, the events triggered
in the background have influence on the optical flow estimation
model (the bottom left case). Our method effectively removes the
flickering events in the background, which significantly improve
the accuracy of the flow estimation. In the last case, the results

from flickering events and EFR [36] made wrong estimation, while
the proposed EDeF-Net preserves the motion-triggered events only,
resulting in correct flow estimation from the model [12].

Event-based object tracking. We choose an event-based object
tracking method: STNet [39] as the benchmark tracker, which di-
rectly outputs the bounding box in an end-to-end manner. We use
both synthetic data and real data to evaluate the performance of
single object tracking on the raw flickering event streams and the
corresponding streams after flicker removal. On synthetic data, we
manually label the bounding box for each frame and evaluate by
the intersection over union (IoU) and the center location distance
(DIS) between the predicted and ground truth bounding boxes. The
qualitative and quantitative evaluation results are shown in Figure 6
and Tab. 2, respectively. Both of the visual examples and evaluation
metrics demonstrate the improvement of the performance of object
tracker [39] on the filtered event streams, where the redundant
flickering events have been removed by the proposed EDeF-Net.
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Figure 6: The tracking results on synthetic and real event
sequences. The red and green bounding boxes represent the
ground truth and prediction, respectively (There is no ground
truth of bonding box for real data).

Table 2: Quantitative evaluation of event-based object track-
ing on 20 synthetic samples.

Flickering
events

EFR
[36]

EDeF-Net
(Ours)

IoU↑ 0.640 0.534 0.658
DIS↓ 21.93 30.75 16.82

However, the comparing method EFR [36] mixed the temporal or-
der of the flickering event streams, which introduces blurry effect
that has impact on the accuracy of object tracking. Figure 6 shows
the real data results of object tracking. It is obvious that the event
streams filtered by EDeF-Net can yield higher tracking accuracy
compared to that from the raw flickering events and events filtered
by EFR [36].

4.4 Ablation study
To evaluate the effectiveness of modules and design in the proposed
EDeF-Net, we conduct experiments on different model variants, as

Table 3: Quantitative evaluation of ablation studies.

MSE↓ MAE↓ SNR↑ PSNR↑
W/o TAtt-M 0.192 0.096 2.329 23.84
W/o SAtt-M 0.200 0.098 2.315 23.75
2D Conv 0.164 0.084 2.488 24.40
W/o L𝑠 0.161 0.084 2.534 24.42

Complete model 0.158 0.082 2.591 24.45

summarized in Tab. 3. In the first two variants, we remove the tem-
poral attention module (W/o TAtt-M) or spatial attention module
(W/o SAtt-M) from EDeF-Net, respectively. The first variant only
computes the spatial attention among patches without considering
the intra-pixel temporal correlation. Therefore, it is hard to learn
the flickering pattern along the temporal axis. The variant with-
out SAtt-M does not preserve the spatial consistency, resulting in
performance degradation. Removing the SAtt-M affects more on
the evaluation metrics. Because the output of SAtt-M is residual
addition (+) that is easier for network to adapt. We further validate
the effectiveness of 3D convolution by substituting them with 2D
convolutions in SAtt-M. The 3D convolutions assign filters with
different weights to different channels, which play an important
role in processing tensors with important temporal information.
To demonstrate the contribution of sparsity loss, we validate train
a network variant without L𝑠 , whose performance degrades com-
pared to the complete model.

5 Conclusion
In this paper, we propose to solve the problem of the ambiguity that
whether an event is triggered frommotion or flickering light source,
and remove the redundant flickering event signals. We introduce
EDeF-Net, a network with specially designed temporal attention
and spatial attention modules. It effectively removes the redundant
events triggered by flickering light sources and preserves the valid
events triggered only by motion. Besides, we synthesize a dataset
with flickering and non-flickering event streams for training and
evaluation. We have conducted extensive experiments on the per-
formance of flickering events filtering and several down-stream
applications. The quantitative and qualitative evaluations demon-
strated that the EDeF-Net can effectively remove the flickering
events. The flicker-free event streams filtered by EDeF-Net yield
performance improvement in the down-stream applications.

Limitations. Compared to the classical filter-based methods, the
proposed EDeF-Net requires a training process. Besides, the event
redistribution may have impact on the temporal resolution of the
filtered event streams if the time window in a stack is too long.
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6 Visualization of Attention Maps
We present visualizations of the attention maps calculated by our
temporal attention module (TAtt-M) and spatial attention module
(SAtt-M) to demonstrate the effectiveness of these two modules
in modeling the temporal correlation and spatial consistency of
event streams. As shown in Figure 8, we visualize the channel-
wise temporal attention and spatial attention maps of a real-world
example. The flickering stack that covers a whole flickering cycle is
split into 8 channels, which clearly show the global events triggered
by the flickering cycle at that time window (e.g., negative events in
channel 2-4, and positive events in channel 5-7). The average value
of each temporal attention map is highly related to the dominant
events at that channel. For example, the temporal attention maps at
the central channels (i.e., channels 2-7) are darker compared to the
sided channels (i.e., channels 1 and 8), which indicates that those
temporal attention maps try to refrain the flicker-triggered global
events at those channels. It shows that the TAtt-M has learned to
give different attention weights to different channels in one event
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stack. Meanwhile, in the temporal attention maps, the pixels in
the object edges keep high values among all the channels, which
means the temporal attention does not affect the spatial consistency.
In essence, the visualization of temporal attention validates the
proficiency of TAtt-M in discerning and leveraging the temporal
correlation within event streams.

For the spatial attention map in Figure 8, it exhibits higher uni-
formity among the pixels where events exist, enhancing the preser-
vation of spatial structure and consistency. Through the strategic
allocation of varied attention weights to distinct event patches, it
highlights critical features while diminishing the prominence of
non-essential regions. This selective focus significantly maintains
the spatial consistency within event streams.

7 Events Redistribution
In this section, we introduce post-processing of the network’s out-
put and how to redistribute the events back into the streams from
the stacks. Since the output of the network is an 8-channel stack
with floating-point values, our initial step is to round off these
floating-point values, which filters out the flickering part and pre-
serves the valid events triggered bymotion. Thenwe conduct events
redistribution in a channel-wise manner. As illustrated in Figure 11,
the proposed EDeF-Net removes flicker-triggered events (i.e., the
dotted circles) in each channel of the event stack. For the remaining
valid events in each channel, each of them is assigned with a ran-
dom timestamp within the time window. This procedure ensures
that the sequential integrity of event signals is maintained during
the conversion from stack format to stream. Although we cannot
restore the exactly original timestamps of the preserved events,
this approach significantly enhances the temporal consistency of
the event signals. This method strikes a balance between maintain-
ing the structural integrity of event streams and addressing the
challenge of timestamp precision loss.

8 Robustness of EDeF-Net
The proposed EDeF-Net is designed to remove the flickering events
while preserving the motion-triggered events in scenarios with
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Figure 8: Visualization of the temporal attention and spatial
attention of a real-world example. The flickering events stack
(top left) is split to display each individual channel. The
corresponding temporal residual maps are shown under each
channel of the flickering stack. The spatial attention map is
shown under the flickering events stack.

flickering light sources. However, in scenarios with constant light-
ing, there is no flickering events triggered. Therefore, it is neces-
sary to keep the original event signals unaffected. The experiments
demonstrate that EDeF-Net performs robustly on such kind of sce-
narios and ensures that meaningful motion events are retained
while minimizing the impact of any other remaining noise. As the
results of non-flickering scenarios shown in the Figure 9, the input
events streams are captured under constant lighting. The comparing
EFR [2] and PINK [1] cannot adapt to this scenario and introduce
blurry artifacts in the results. The proposed EDeF-Net can effec-
tively preserve the events on the moving objects and remove the
noise in the background. This adaptability is crucial for applications
in various scenarios with different lighting conditions, as it ensures
that relevant event signals are well-preserved for post-processing.
Besides, the proposed EDeF-Net can be easily adapted to flickering
light sources with different frequencies. Since the flickering cycles
can be estimated by sampling the positive and negative events in
temporal axis, such as Xu et al. [3] did in their paper, we can stack
the event signals based on the estimated flickering cycle and feed
it into the EDeF-Net for flicker removal.

9 Computational Cost
The inference time and FLOPs for an event stack (with shape of 256
× 256 × 8) are 67.92 G 0.37 s on an NVIDIA V100 GPU. We agree
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Figure 9: The qualitative comparison of the filtered results on
non-flickering scenarios. The first column shows the input
event streams, and the second and third columns show the
results from EFR [2], PINK [1], and the proposed EDeF-Net,
respectively.

that the self-attention mechanisms may affect runtime on edge
devices. However, we can develop optimized transformer operators
tailored for edge devices to significantly reduce latency and make
EDeF-Net more suitable for real-time embedded applications.

10 Unknown Flicker Frequency
In our current setup, we assume that the AC flicker frequency
(e.g., 100 Hz) is known or can be measured from short calibration.
For example, by applying E-ENF [3] to the first small period of
events, the flickering frequency can be estimated by sampling the
positive and negative events in temporal axis. Then we can stack
the event signals based on the estimated flickering frequency, and
the proposed EDeF-Net can be easily adapted to different flickering
light sources. This stacking process is decoupled from the design of
EDeF-Net itself, which operates on the assumption that the input
stack contains a complete flicker cycle.

11 Additional Results of EDeF-Net
In Figure 10, we show further qualitative outcomes of deflickering
on real-world event data. Furthermore, we present a supplemen-
tary video to demonstrate the effectiveness of EDeF-Net. The sup-
plementary video provides the results of event stream deflickering
and extending to two applied scenarios: event-based optical flow
estimation and object tracking.
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Figure 10: Qualitative comparison of real flickering sequences and their deflickering results. Please zoom in for more details.
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Figure 11: The process of event stream stacking and redistribution. The dotted circles represent the events that are filtered out
by the proposed EDeF-Net.
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