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Figure 1. Comparison of efficiency and accuracy on reflective surface reconstruction. Our method takes the shortest time while comparable
shape reconstruction accuracy (measured by Chamfer Distance in millimeters) with the existing method based on neural implicit surface

representation [23].

Abstract

Efficient shape reconstruction for surfaces with complex
reflectance properties is crucial for real-time virtual re-
ality. While 3D Gaussian Splatting (3DGS)-based meth-
ods offer fast novel view rendering by leveraging their ex-
plicit surface representation, their reconstruction quality
lags behind that of implicit neural representations, partic-
ularly in the case of recovering surfaces with complex re-
flective reflectance. To address these problems, we propose
PolGS, a Polarimetric Gaussian Splatting model allowing
fast reflective surface reconstruction in 10 minutes. By inte-
grating polarimetric constraints into the 3DGS framework,
PolGS effectively separates specular and diffuse compo-
nents, enhancing reconstruction quality for challenging re-
flective materials. Experimental results on the synthetic and
real-world dataset validate the effectiveness of our method.
Project page: https://yu-fei-han.github.io/polgs.

1. Introduction

Fast and accurate reconstruction of reflective surfaces is es-
sential for applications like real-time virtual reality and in-
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verse rendering. Reflective surfaces meet unique challenges
in 3D reconstruction as their specular properties require pre-
cise handling of light interactions to capture realistic surface
details. It is desired to develop a fast and accurate recon-
struction method for reflective surfaces.

For reflective surface reconstruction, most existing meth-
ods rely on implicit neural representations [28], such as Ref-
NeRF [34] and NeRO [23], which model complex surface
details effectively but suffer from slow processing times
due to their implicit neural network structure. While the
signed distance function (SDF) offers a better geometry rep-
resentation, the MLP network incurs significant time costs.
In contrast, the recent 3D Gaussian Splatting (3DGS) [14]
technique offers a promising approach for fast novel view
rendering through explicit surface representation. However,
this representation lacks the same level of detail as implicit
methods due to limitations in representing fine geometry
and surface normals. Additionally, 3DGS-based reconstruc-
tion methods primarily focus on diffuse surfaces, leaving re-
flective surfaces under-explored and resulting in lower qual-
ity reconstructions for these challenging materials.

To address the challenge of reflective surface reconstruc-
tion, polarized images are often utilized to enhance shape
representation [3, 8, 12, 17]. By decomposing the dif-
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fuse and specular components according to the polarimet-
ric bidirectional reflectance distribution function (pBRDF)
model [2], the surface normal can be effectively con-
strained. However, existing polarization-based methods
rely on implicit neural representations, which significantly
slow down the reconstruction process.

To achieve high efficiency in reflective surface recon-
struction, we propose PolGS, a novel method that integrates
polarimetric information into the 3DGS architecture for the
first time. Unlike previous approaches, the explicit sur-
face representation and splatting rendering in 3DGS present
unique challenges for directly applying polarimetric con-
straints. To overcome this, we adopt an enhanced 3DGS-
based method, Gaussian Surfels [7], as our baseline, which
offers better surface representation capabilities. To ensure
that each Gaussian kernel retains a view-independent dif-
fuse color, we modify the spherical harmonics (SH) coef-
ficients to zero-order. Next, we introduce a Cubemap En-
coder module, inspired by 3DGS-DR [44], to extract the
specular component. Finally, we use the polarimetric con-
straint during the separation of diffuse and specular compo-
nents [2]. This approach resolves shape ambiguities that
arise when relying solely on RGB inputs, enabling more
accurate reconstruction of reflective surfaces, especially for
texture-less object.

As shown in the teaser Fig. 1 and Table 1, PolGS
achieves reconstruction quality comparable with SDF-
based methods but with over 80-times speed improvement
(compared to the fastest and best neural-based reconstruc-
tion work in our experiment using RGB input [23]), making
it highly suitable for virtual reality applications and real-
time inverse rendering.

In summary, we advance the reflective surface recon-
struction by proposing:

* PolGS, the first method to incorporate polarimetric infor-
mation into 3DGS, accelerating the progress of surface
reconstruction.

* A pBRDF module integrated into 3DGS, which effec-
tively constrains the diffuse and specular components of
reflective surfaces, enhancing the accuracy of surface re-
construction.

* Our method achieves reconstruction quality comparable
with SDF-based approaches while significantly improv-
ing reconstruction time within 10 min. Compared to ex-
isting 3DGS methods, PolGS delivers enhancements in
reconstruction quality.

2. Related works

Our PolGS aims to reconstruct reflective surface with 3DGS
by using polarized images, so we summarize recent pro-
gresses in 3D reconstruction techniques, focusing on reflec-
tive surfaces through SDF-based methods, 3DGS methods,
and polarized image-based reconstruction, respectively.

Table 1. Comparison of different methods in reflective 3D recon-
struction: the top four methods are SDF-based, while the bottom
four methods are based on 3DGS.

Input Method Reflective  Accuracy time (h)
RGB Images NeRO [23] 4 high 8
Azimuths MVAS [3] v high 11
Pol. Images PANDORA [8] v medium 10
Pol. Images NeRSP [12] 4 high 10
RGB Images  Gaussian Surfels [7] X low 0.2
RGB Images 3DGS-DR [44] v low 0.2
RGB Images Re-3DGS [10] v low 0.4
Pol. Images PolGS (Ours) v medium 0.1

3D reconstruction based on neural SDF representation
Novel view synthesis has achieved great success using Neu-
ral Radiance Fields (NeRF [28]). Motivated by the structure
of the multi-layer perceptron (MLP) network within NeRFs,
numerous 3D reconstruction methods have emerged that
leverage implicit neural representations to predict object
surfaces. Some approaches [31, 42] proposed the signed
distance field (SDF) into the neural radiance field, effec-
tively representing the surface as an implicit function. Other
works [22, 32, 37, 39, 40, 43] extend it by proposing effi-
cient framework in detailed surface reconstruction.

These methods based on SDF represent complex scenes
implicitly, but they typically suffer from high computational
demands and are not suitable for real-time applications. Al-
though some methods [22, 40] utilize hash grids and instant-
NGP [30] structure, it is still a challenge for them to recon-
struct the mesh efficiently facing the reflective surface.

Ref-NeRF [34] uses the Integrated Directional Encoding
(IDE) structure to estimate the specular reflection compo-
nents of the object surface by using predicted roughness,
view direction, and surface normals. NeRO [23] improves
it by generating the physically-based rendering (PBR) pa-
rameters, and NeP [36] can better deal with the glossy sur-
face. TensoSDF [19] combines a novel tensorial represen-
tation [4] with the radiance and reflectance field for robust
geometry reconstruction. However, these approaches can
not avoid high optimization time.

3D reconstruction based on 3DGS 3DGS [14] aims to
address limitations of neural radiance fields by representing
complex spatial points using 3D Gaussian ellipsoids. How-
ever, 3D ellipsoids cannot conform effectively to actual ob-
ject surfaces, resulting in inaccuracies in shape representa-
tion when producing point clouds.

To overcome these drawbacks, several extensions and
modifications have been proposed. SuGaR [11] approx-
imates 2D Gaussians with 3D Gaussians, NeuSG [6],
GSDF [45] and 3DGSR [24] integrate an extra SDF net-
work for representing surface normals to supervise the
Gaussian Splatting geometry. 2D Gaussian Splatting [13]



and Gaussian Surfels [7] have taken a different approach by
transforming the 3D ellipsoids into 2D ellipses for model-
ing. This transformation allows for more refined constraints
on depth and normal consistency, addressing the surface
approximation issues more effectively. GOF [46] achieves
more realistic mesh generation through its innovative opac-
ity rendering strategy. However, these methods do not focus
on reflective surface reconstruction.

Re-3DGS [10] associates extra properties, including
normal vectors, BRDF parameters, and incident lighting
from various directions to make photo-realistic relighting.
3DGS-DR [44] presents a deferred shading method to ef-
fectively render specular reflection with Gaussian splatting.
Despite these advancements, these methods still face chal-
lenges in many scenarios and cannot provide accurate geo-
metric expression.

3D reconstruction using polarized images Polarized
images are widely used in Shape from Polarization (SfP) [,
2,9, 15,16, 26, 27, 29, 33, 41], reflection removal [20, 25,
38], and some downstream tasks [21, 48] due to the strong
physics-preliminary information in the Stokes field. The
SfP task aims to predict the surface normal captured by the
polarization camera under the single distant light [26, 33]
or unknown ambient light [1, 15]. Multi-view 3D recon-
struction works using polarized images [47] try to settle
down the 7 and 7/2 ambiguities with the Angle of Polar-
ization (AoP). PANDORA [8] first uses polarized images
in neural 3D reconstruction work, following the relevant
constraints of pBRDF [2]. MVAS [3] leverages multi-view
AoP maps to generate tangent spaces for surface points dur-
ing the optimization process, which can reconstruct mesh
without rendering supervision. NeRSP [12] combines the
photometric and geometric cues from polarized images and
generates better results under sparse views for reflective sur-
faces. PISR [5] focuses on texture-less specular surface
and integrates the multi-resolution hash grid for efficiency.
NelSFs [17, 18] consider the inter-reflection and models
multi-bounce polarized light paths during rendering. De-
spite these advancements, computational cost remains a sig-
nificant limitation for many polarized-based 3D reconstruc-
tion methods.

3. Preliminaries

3.1. Gaussian surfels model

Our PolGS selects Gaussian Surfels [7] as our base frame-
work due to its stronger geometry expression ability. Ac-
cording to Gaussian Surfels [7], we use a set of unstructured
Gaussian kernels {G; = {x;,s;,1;,0;, C; }|i € N'} torepre-
sent the structure of 3DGS, where x; € R? denotes the cen-
ter position of each Gaussian kernel, s; = [s?,s?,0]" € R?
is the scaling factors of x and y axes after flatting the 3D
Gaussians [14], r; € R* is the rotation quaternion, o; € R

is the opacity, and C; € RF represents the spherical har-
monic coefficients of each Gaussian. And Gaussian distri-
bution can be defined by the covariance matrix X of a 3D
Gaussian as:

1
G(x;x;, %) :exp(fi(xfxi)TEi_l(xfxi)), (1)
where X; can be represented as:
Ei = R(l’i)SiSIR(I’i)T
= R(r;)Diag[(s7)?, (s7)? 0]R(r;) T,
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where Diag[-] indicates a diagonal matrix and R(r;) is a
3 X 3 rotation matrix represented by r;.

Gaussian splatting  According to 3D GS [14], novel view
rendering process can be represented as:

C= iTiaicia 3)
=0

where T; = H;;B( 1 — «;) is the transmittance, o; =
G’ (u;u;, X})o; is alpha-blending weight, which is the prod-
uct of opacity and the Gaussian weight based on pixel u. In
order to speed up the rendering process, the 3D Gaussian in
Eq. (2) is re-parameterized in 2D ray space [50] as G:

G, ) = exp(— 5 (u—w) % @), @)

where X = (JyWiX; W] J1)[: 2,: 2]. The Wy, is a view-
ing transformation matrix for input image k£ and Jj is the
affine approximation of the projective transformation. X}
represents the covariance matrix in the 2D ray space.

The depth D and normal N for each pixel can also be
calculated via Gaussian splatting and alpha-blending:

n

~ 1
D=—— N "Tdu), 5
=T ; (w) 5)
- 1 n
N=——+ TZCQRZ 1,2 . (6)
1- Tn+1 ; [ ]

Specifically, according to Gaussian Surfels [7], the depth
of pixel u for each Gaussian kernel ¢ is computed by calcu-
lating the intersection of the ray cast through pixel u with
the Gaussian ellipse during splatting. So d;(u) can be rep-
resented by Taylor expansion as:

di(ll) = dl(lll) + (WkRi)[27 Z]Jl;l (ll — lli), @)
where J ;,.1 is the Jacobian inverse mapping one pixel from
image space to tangent plane of the Gaussian surfel as
in [49], and (WgR;) transforms the rotation matrix of a
Gaussian surfel to the camera space.



3.2. Polarimetric image formation model

Polarization cameras can capture polarized images in a sin-
gle shot, which can be represented as 4 different polarized
angles of images I = [lo, I45, Igo, I135). The Stokes vector
S = {50, $1, S2, $3} can be calculated by:

(I + Lus + Ioo + I135)
g = Iy — Igo ’ )

Iys — I35
0

where we assume the light source is no circularly polarized
here, thus the s3 is 0.

According to PANDORA [8] and NeRSP [12], we as-
sume the incident environmental illumination is unpolar-
ized, the Stokes vector for the incident light direction w can
be expressed as:

si(w) = L(w)[1,0,0,0] ", )

where L(w) represents the light intensity. The polarization
camera captures outgoing light that becomes partially polar-
ized due to reflection, which is modeled using a 4 x 4 Muller
matrix H. The outgoing Stokes vector s then is formulated
as the integral of the incident Stokes vector multiplied by
this Mueller matrix:

s(v) = /QHsz-(w) dw, (10)

where v indicates the view direction and €2 is the inte-
gral domain. Following the polarized BRDF (pBRDF)
model [2], the output Stokes vector can be divided into dif-
fuse and specular components, represented by H,; and H;
respectively. s can be represented as:

s(v) = /QHdsi(w) dw+/QHssi(w) dw. (11)

Based on the derivations from PANDORA [8] and
NeRSP [12], the output Stokes vector can be further speci-
fied as:

T." Rt
_ T, cos(2¢y,) R~ cos(2¢n)
s(v) = La —T, sin(2¢,) +Ls —R™sin(2¢p) | (12)
0 0

where Ly = [, pL(w)w 'nT;"T; dw denotes the dif-
fuse radiance associated with the surface normal n, Fres-
nel transmission coefficients [2] T;fo and T; . The diffuse
albedo is represented by p, and ¢,, is the azimuth angle of
the incident light.

Similarly, L, = [, L(w)% dw denotes the specular
radiance, which involves Fresnel reflection coefficients [2]
R* and R™, and the incident azimuth angle ¢, concerning
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Figure 2. Comparison between SDF-based and 3DGS-based
method on geometry representation. (Top) The surface normal
of a point has a strong relationship with its opacity in NeuS [37].
(Bottom) The surface normal of a point is dependent on its opac-
ity in Gaussian Surfels [7].

the half vector h = —<+tv_

lwtv]s-
in our model, we assume that ¢, is equivalent to ¢,,. The

Microfacet model incorporates the normal distribution and
shadowing terms represented by D and G [35].

For the sake of simplification

4. Proposed method

Our PolGS framework integrates multi-view polarized im-
ages, their corresponding masks, and camera pose informa-
tion to produce a rich output that includes diffuse and specu-
lar components represented as Stokes vectors across various
views, a reconstructed geometric mesh, and estimated envi-
ronment light. In this section, we will analyze the surface
normal representations employed in SDF-based approaches
and 3DGS methods. Then we introduce a theoretical foun-
dation for our polarization-guided reconstruction pipeline.

4.1. Analysis of surface normal representation

In implicit neural networks, they use signed distance to de-
termine if points are on the surface and the surface normals
are obtained by calculating gradients of the SDF. However,
3DGS methods often treat the surface normal as inherent
properties typically. In this section, we analyze the differ-
ences between the surface normal representations in SDF-
based methods and 3DGS, explaining the reason we use po-
larimetric cues in the Gaussian Splatting method.
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Figure 3. Pipeline of PolGS. We re-rendered Stokes vectors § by using the diffuse color C' from 3DGS and specular color L, from Cubemap
encoder module, which is supervised by the ground truth Stokes information.

SDF-based representation The implicit neural network
approach, exemplified by NeuS [37], enhances the con-
straints on the reconstructed surface by incorporating a
Signed Distance Function (SDF). As illustrated at the top of
Fig. 2, the SDF value f(x), generated by the SDF Network,
can be used to compute the normal vector n(x) at point x.
According to the definition, the opacity p(x) of a point x is
given by:

@, (f(x))

where @, is a sigmoid function.

During optimization, the surface normal and the opac-
ity at a given point influence each other. Consequently,
after optimization, points farther from the surface tend to
have lower opacity values, while the final normal vector is
predominantly determined by points located on the surface.
This mutual interaction results in a more precise and accu-
rate representation of the surface.

p(x) = max (Cmﬁ) ; (13)

3DGS-based representation In the case of Gaussian Sur-
fels [7], surface normal is derived from the vector perpen-
dicular to the plane of a 2D ellipsoid. As shown at the bot-
tom of Fig. 2, for a single Gaussian kernel, there is no in-
herent relationship between opacity and the surface normal.

The pixel-level constraint in 3DGS creates a probabilis-
tic representation where no single Gaussian kernel is defini-
tively assigned to a surface. Consequently, multiple Gaus-
sian kernel configurations can potentially represent equiva-
lent surface geometries, introducing inherent reconstruction
ambiguity. The optimization mechanism effectively blends
contributions from multiple Gaussian points, which offers
reconstruction adaptability but compromises the precision
of individual point geometric characterizations.

It is obvious that using the normal prediction model as a
prior constraint in Gaussian Splatting benefits object recon-
struction, as demonstrated by Gaussian Surfels [7]. How-
ever, the normal prediction model is not always reliable es-
pecially in reflective cases, highlighting the need for a more
robust method to provide prior information.

Polarimetric information for reflective surfaces Reflec-
tive surface reconstruction is challenging due to the view-
dependent appearance. Unlike traditional RGB image in-
puts, polarimetric information can effectively constrain the
surface normal during the rendering of Stokes Vectors with
the pBDRF model [2]. Specifically, as demonstrated in
Eq. (12), the diffuse and specular components of s; and sq
exhibit a strong correlation with the object’s surface nor-
mals. Leveraging this property, we incorporate polarimetric
information as a prior in shape reconstruction and use the
3DGS-based method to accelerate this process.

4.2. PolGS

Network structure In this section, we introduce our pro-
posed PolGS, which is a novel 3D reconstruction method
that integrates the Gaussian Splatting method with polari-
metric information. The network structure of PolGS is
shown in Fig. 3. The framework comprises two primary
components: the Gaussian Surfels module and the Cube-
map Encoder module. Initially, the Gaussian Surfels mod-
ule is employed to estimate the diffuse component of the
object, seems like Gaussian Surfels [7]. Subsequently,
we utilize the CubeMap Encoder to assess the specular
component, akin to the approach taken in 3DGS-DR [44].
While the CubeMap Encoder does not provide the rough-
ness component, it effectively handles reflective or rough
surfaces and maintains high computational efficiency due to
its CUDA-based implementation. To enhance the rendering
process, we incorporate a pPBRDF model into the rendering
formulation. This addition introduces a polarimetric con-
straint that further refines the Gaussian Splatting method,
enabling more accurate and realistic 3D reconstructions.
The final rendering formulation model following Eq. (12)
can be represented as:

T R*

5 T, cos(2¢)n) R~ cos(2¢p)

§=c —T, sin(2¢,) Tl _p- sin(2¢p) |’ 1)
0 0



where C is the diffuse color after Gaussian Surfels render-
ing according to Eq. (3) and L, is the specular color af-
ter CubeMap rendering E(-), which can be represented as
L, =FEQ2(v-n)n—v).

Adjustment of spherical harmonic coefficients Due to
Eq. (14), the diffuse color rendered by Gaussian Surfels
must remain consistent across different viewing directions.
To satisfy this constraint, we adjust the spherical harmonic
(SH) coefficients of the Gaussian Surfels to zero-order, en-
suring the splatting results are view-independent.

4.3. Training

The overall training loss in PolGS formulated as a compre-
hensive weighted sum of multiple loss components:

L= »C'r‘gb + Al»cpol + )\2£m + >\3£'o + )\4£d7 (15)

where we set Ay = 1, Ay = 0.1, A3 = 0.01, A, = 0.01 +
0.1 - (iteration/15000) to balance the loss function.

Rendering Stokes loss L, and L,, The rendering
Stokes loss is combined with the sg (unpolarized image)
rendering loss as 3DGS [14] and the s, so rendering loss
as PANDORA [8] [2]. These two loss functions can be rep-
resented as:

Lrgp = 0.8 Li(s0,50) +0.2- Lpssra(so,50), (16)
Lpot = L1(s1,51) + L1(s2, 82). (17

Mask loss £,, The mask loss is used to make the render-
ing results of the object more accurate, which can be repre-
sented as:

L., = YBCE(M,M). (18)

Opacity loss £, The opacity loss follows Gaussian Sur-
fels [7] to encourage the opacity of the Gaussian points to
be close to 1 or 0. It can be represented as:

L, = Sexp(—20(0; — 0.5)%). (19)

Depth-normal consistency loss £; The depth-normal
consistency loss follows Gaussian Surfels [7] to make the
rendered depth and normal of the object to be more consis-
tent. It can be represented as:

Li=1-N-N(V(D)), (20)

where V(+) transforms each pixel and its depth to a 3D point
and N (-) calculates the normal from neighboring points us-
ing the cross product.

5. Experiments

To evaluate the performance of our method, we conduct
these experiments: 1) Shape reconstruction on synthetic
dataset, 2) Shape reconstruction on real-world dataset, 3)
Radiance decomposition and 4) Ablation study of polari-
metric constraint adding.

Dataset We use three datasets to evaluate our method:
the synthetic dataset SMVP3D [12], the real-world dataset
RMVP3D [12], PANDORA [8] and PISR [5], where PAN-
DORA [8] can only be used for qualitative evaluation due
to the lack of ground truth.

Baselines We compare our method with state-of-the-
art techniques, including SDF-based methods NeRO [23],
MVAS [3], PANDORA [8], NeRSP [12], and 3DGS
methods Gaussian Surfels [7], 3DGS-DR [44], and Re-
3DGS [10]. All of these methods, except Gaussian Sur-
fels [7], can handle reflective surfaces. MVAS [3], PAN-
DORA [8] and NeRSP [12] utilize polarimetric information
to reconstruct shapes. Specifically, we do not add the nor-
mal prior in Gaussian Surfels [7] among the whole experi-
ments.

Evaluation metrics We use the Chamfer Distance (CD)
to evaluate the shape recovery performance and the mean
angular error (MAE) to evaluate the quality of surface nor-
mal estimations. 3DGS-based methods provide point cloud
results and we use the Poisson surface reconstruction to
generate the mesh for the evaluation.

Implementation details We conduct the experiments on
an NVIDIA RTX 4090 GPU with 24GB memory. The train-
ing of our model is implemented in PyTorch 1.12.1 using
the Adam optimizer. The specific learning rates of different
components in Gaussian kernels are set the same as Gaus-
sian Surfels [7]. We use the warm-up strategy to train the
model, where adding the polarimetric information and de-
ferred rendering after 1000 iterations.

5.1. Reconstruction results on synthetic dataset

In Fig. 4 and Table 2, we compare the shape recovery per-
formance of various methods on the SMVP3D [12] dataset,
which contains five objects with spatially varying and re-
flective properties. However, it is worth noting that SDF-
based methods, such as NeRO [23], MVAS [3], PAN-
DORA [8], and NeRSP [12], outperform 3DGS methods
in terms of surface representation. This advantage is largely
due to their superior ability to model complex surface de-
tails. Among the 3DGS methods, Gaussian Surfels [7]
struggles with reflective surfaces, while 3DGS-DR [44]
and Re-3DGS [10] still has difficulty in representation of
surface normal accurately. In contrast, PolGS effectively
leverages polarimetric information, significantly improv-
ing geometric surface performance. Due to the inadequate
point cloud generation by other 3DGS methods, they fail
to produce reasonable mesh results using Poisson surface
reconstruction. Our method, however, achieves the lowest
mean Chamfer Distance across the synthetic SMVP3D [12]
dataset, reinforcing the trends observed in surface normal
estimations and confirming that our approach delivers the
best performance among the 3DGS techniques.
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Figure 4. Qualitative comparisons on surface normal estimation of SQUIRREL in SMVP3D [12], where our 3DGS-based method can out-
perform existing methods based on the same representation and achieves comparable results with SDF-based methods such as NeRSP [12]

and PANDORA [8].
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Figure 5. Qualitative comparison shape on PANDORA [8] and RMVP3D [12], where PolGS (Ours) produces similar quality of recon-

struction mesh compared to SDF-based methods.
5.2. Reconstruction results on real-world dataset

We further evaluate the reconstruction performance on the
RMVP3D [12] and PANDORA [8] datasets, with qualita-
tive results illustrated in Fig. 5 and quantitative results de-
tailed in Table 2. In real-world scenarios, our method pro-
duces reconstructions that align more closely with SDF-
based approaches, while significantly outperforming other
3DGS-based methods in terms of reconstruction quality.
For example, in the VASE case, our approach accurately es-
timates the shape of a ceramic surface in just 7 minutes,
achieving results closer to those generated by SDF-based
methods. Additionally, the FROG sample highlights our
method’s ability to reconstruct objects with rough glossy
surfaces, showing the robustness and generalization capa-
bility of our method. These results collectively demonstrate
the effectiveness of our approach in handling diverse real-
world objects with varying surface properties.

PANDORA [8]
-

3DGS-DR [44] PolGS (Ours)

Diffuse Specular Diffuse Specular

Diffuse Specular

Figure 6. Separation of diffuse and specular components with
PANDORA [8], 3DGS-DR [44] and PolGS (Ours).

5.3. Comparison of radiance decomposition

Figure 6 presents a comparison of diffuse and specular com-
ponent decomposition generated by PANDORA [8], 3DGS-
DR [44], and PolGS (Ours). Here, PANDORA [8] utilizes
the IDE [34] structure to produce environment map results,
whereas PolGS (Ours) adopts 3DGS-DR [44]’s methods by



Table 2. Comparisons on SMVP3D [12] and RMVP3D [12] evaluated by mean angular error (MAE) (].) with degree and Chamfer distance
(CD) () in millimeter (mm), respectively. Best and second results in SDF-based and 3DGS-based methods (except PolGS w/o L) are

highlighted as 1st and 2nd . The time consumed is shown on the far right side of the table.

SMVP3D [12] RMVP3D [12] Mean
Method HEDGEHOG  SQUIRREL SNAIL DAVID DRAGON SHISA FROG DoG time
MAE CD MAE CD MAE CD MAE CD MAE CD |[MAE CD MAE CD MAE CD | MAE CD
PANDORA [8] 941 950 10.85 588 8.08 1097 1475 4.88 1633 478 | 1293 11.29 1586 7.88 20.11 10.19| 13.54 8.17 | 10h
NeRSP [12] 894 6.57 823 3.02 556 372 1538 4.18 1530 3.01 | 1079 7.39 15.62 6.68 16.57 857 | 1205 539 |10h
MVAS [3] 430 422 610 373 330 7.87 847 321 811 1.89| 856 9.28 17.63 7.00 16.65 8.76 | 9.01 574 | 11h
NeRO [23] 34 369 355 186 267 371 7.64 288 812 1.69 | 841 488 1529 539 1772 874 | 827 4.10 | 8h
3DGS-DR [44] 1228 12.66 17.18 11.20 11.42 20.7 20.56 791 2620 9.56 | 19.53 15.87 17.08 27.67 24.85 11.00| 19.76 13.32 |0.2h
Re-3DGS [10] 1440 19.84 1541 1897 9.08 19.04 1547 13.47 17.65 10.96| 16.69 14.66 17.85 13.35 21.53 12.24| 1589 14.12 |0.4h
Gaussian Surfels [7] 16.50 8.82 21.65 9.53 19.05 14.04 21.56 7.39 21.41 698 | 1279 9.09 16.19 7.01 1930 9.56 | 18.56 10.30 |0.2h
PolGS (Ours) 10.83 7.62 1142 628 9.64 1085 13.99 530 2423 7.61 | 10.88 7.76 15.03 7.48 18.80 7.71 | 1435 7.57 |0.1h
PolGS w/o L, 11.39 797 11.83 639 982 10.75 1544 590 2574 8221095 7.92 1516 756 1886 7.74 | 1489 7.80 [0.1h
HEDGEHOG °
) 971 20 views 14 views

" GT normal

Figure 7. Ablation study on surface normal estimation with and
without polarimetric information £,.;. The MAE values are dis-
played on the top of each image.

employing a Cubemap encoder for the same purpose. Com-
pared with 3DGS-DR [44], PolGS (Ours) leverages addi-
tional polarimetric information to effectively constrain and
disambiguate diffuse and specular components. Notably,
our results closely align with PANDORA [8]’s, demonstrat-
ing improved radiance decomposition ability.

5.4. Ablation study

In this section, we conduct an ablation study to evaluate
the contribution of polarimetric information to surface re-
construction. As shown in Table 2 and Fig. 7, integrating
L1 consistently improves reconstruction accuracy across
both synthetic and real-world datasets. The incorporation of
Lo particularly enhances geometric fidelity in challenging
regions such as the HEDGEHOG’s bottom and the SNAIL’s
back, where it effectively suppresses concave artifacts.

However, for texture-rich surfaces captured under dense
views (>30 views), the existing photometric cues (RGB)
provide sufficient constraints, leaving limited room for ad-
ditional improvement from polarimetric information. This
contrasts with texture-less surfaces like the DAVID statue,
where £, contributes to reconstruction quality by provid-
ing additional geometric constraints.

11.8°4 &

13.8%4 &

W Lpot W Ly

Figure 8. Stokes vectors can help surface normal reconstruction
on texture-less surfaces.

Boosting on texture-less surfaces recovery with £,,,; To
further validate the benefits of L,, on texture-less sur-
faces, we conduct additional experiments using a real-world
dataset from PISR [5], as shown in Fig. 8. While the RGB
appearance lacks discernible texture, the polarization chan-
nels s; and s, exhibit meaningful variations that provide
additional geometric cues for resolving shape ambiguities.
The results show that both concave and convex surface dis-
tortions are more accurately reconstructed when £, is em-
ployed. Moreover, as the number of input views decreases,
the advantages of incorporating polarization become even
more evident. This demonstrates the unique value of polari-
metric information in challenging scenarios where conven-
tional RGB inputs offer limited constraints.

6. Conclusion

We propose PolGS, a novel Polarimetric Gaussian Splatting
method for fast and accurate 3D reconstruction of reflec-
tive surfaces. PolGS leverages polarimetric information for
separating the diffuse and specular components based on
Stokes field, which can help to constrain the surface normal
in the gaussian splatting representation and finally improve
the reflective surface reconstruction results. Extensive ex-
periments demonstrate that PolGS outperforms state-of-the-
art 3DGS methods in terms of accuracy and efficiency.




Acknowledgments

This work was supported by Hebei Natural Science Foun-
dation Project No. 242Q0101Z, Beijing-Tianjin-Hebei Ba-
sic Research Funding Program No. F2024502017, National
Natural Science Foundation of China (Grant No. 62472044,
U24B20155, 62225601, U23B2052, 62136001), Beijing
Natural Science Foundation Project No. 1.242025, BUPT

Excellent Ph.D. Students Foundation.

We thank open-

bayes.com for providing computing resource.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Yunhao Ba, Alex Gilbert, Franklin Wang, Jinfa Yang,
Rui Chen, Yiqin Wang, Lei Yan, Boxin Shi, and Achuta
Kadambi. Deep shape from polarization. In Proceedings
of the European Conference on Computer Vision (ECCV),
2020. 3

Seung-Hwan Baek, Daniel S Jeon, Xin Tong, and Min H
Kim. Simultaneous acquisition of polarimetric svbrdf and
normals. ACM Transactions on Graphics, 2018. 2,3,4,5,6
Xu Cao, Hiroaki Santo, Fumio Okura, and Yasuyuki Mat-
sushita. Multi-View Azimuth Stereo via Tangent Space Con-
sistency. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 1,
2,3,6,7,8

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. TensoRF: Tensorial radiance fields. In Proceedings
of the European Conference on Computer Vision (ECCV),
2022. 2

Guangcheng Chen, Yicheng He, Li He, and Hong Zhang.
PISR: Polarimetric neural implicit surface reconstruction for
textureless and specular objects. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2024. 3,
6

Hanlin Chen, Chen Li, and Gim Hee Lee. NeuSG: Neu-
ral implicit surface reconstruction with 3d gaussian splatting
guidance. arXiv preprint arXiv:2312.00846, 2023. 2
Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu,
Huamin Wang, and Weiwei Xu. High-quality surface recon-
struction using gaussian surfels. In ACM SIGGRAPH, 2024.
2,3,4,5,6,7,8

Akshat Dave, Yongyi Zhao, and Ashok Veeraraghavan. Pan-
dora: Polarization-aided neural decomposition of radiance.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV),2022. 1,2,3,4,6,7,8

Valentin Deschaintre, Yiming Lin, and Abhijeet Ghosh.
Deep polarization imaging for 3D shape and svbrdf acquisi-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021. 3

Jian Gao, Chun Gu, Youtian Lin, Zhihao Li, Hao Zhu, Xun
Cao, Li Zhang, and Yao Yao. Relightable 3D gaussians: Re-
alistic point cloud relighting with brdf decomposition and
ray tracing. In Proceedings of the European Conference on
Computer Vision (ECCV), 2024. 2,3,6,7, 8

Antoine Guédon and Vincent Lepetit. SuGaR: Surface-
aligned gaussian splatting for efficient 3D mesh reconstruc-
tion and high-quality mesh rendering. In Proceedings of

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. 2

Yufei Han, Heng Guo, Koki Fukai, Hiroaki Santo, Boxin Shi,
Fumio Okura, Zhanyu Ma, and Yunpeng Jia. NeRSP: Neural
3D Reconstruction for Reflective Objects with Sparse Polar-
ized Images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2024.
1,2,3,4,6,7,8

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2D Gaussian Splatting for geometrically ac-
curate radiance fields. In ACM SIGGRAPH, 2024. 2
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler,
and George Drettakis. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Transactions on Graphics,
2023.1,2,3,6

Chenyang Lei, Chenyang Qi, Jiaxin Xie, Na Fan, Vladlen
Koltun, and Qifeng Chen. Shape from polarization for com-
plex scenes in the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 3

Chenhao Li, Trung Thanh Ngo, and Hajime Nagahara. Deep
Polarization Cues for Single-shot Shape and Subsurface
Scattering Estimation. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2024. 3

Chenhao Li, Taishi Ono, Takeshi Uemori, Hajime Mihara,
Alexander Gatto, Hajime Nagahara, and Yusuke Moriuchi.
NelSF: Neural Incident Stokes Field for Geometry and Ma-
terial Estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2024. 1,3

Chenhao Li, Taishi Ono, Takeshi Uemori, Sho Nitta, Hajime
Mihara, Alexander Gatto, Hajime Nagahara, and Yusuke
Moriuchi. NelSF++: Neural incident stokes field for po-
larized inverse rendering of conductors and dielectrics. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2025. 3

Jia Li, Lu Wang, Lei Zhang, and Beibei Wang. TensoSDF:
Roughness-aware tensorial representation for robust geom-
etry and material reconstruction. ACM Transactions on
Graphics, 2024. 2

Rui Li, Simeng Qiu, Guangming Zang, and Wolfgang Hei-
drich. Reflection separation via multi-bounce polarization
state tracing. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020. 3

Zhuoxiao Li, Haiyang Jiang, Mingdeng Cao, and Yingiang
Zheng. Polarized color image denoising. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 3

Zhaoshuo Li, Thomas Miiller, Alex Evans, Russell H Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.
Neuralangelo: High-fidelity neural surface reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2023. 2

Yuan Liu, Peng Wang, Cheng Lin, Xiaoxiao Long, Jiepeng
Wang, Lingjie Liu, Taku Komura, and Wenping Wang.
NeRO: Neural geometry and brdf reconstruction of reflec-
tive objects from multiview images. ACM Transactions on
Graphics, 2023. 1,2,6,7, 8



[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

Xiaoyang Lyu, Yang-Tian Sun, Yi-Hua Huang, Xiuzhe Wu,
Ziyi Yang, Yilun Chen, Jiangmiao Pang, and Xiaojuan Qi.
3DGSR: Implicit surface reconstruction with 3D gaussian
splatting. ACM Transactions on Graphics, 2024. 2

Youwei Lyu, Zhaopeng Cui, Si Li, Marc Pollefeys, and
Boxin Shi. Physics-guided reflection separation from a pair
of unpolarized and polarized images. I[EEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 3

Youwei Lyu, Lingran Zhao, Si Li, and Boxin Shi. Shape
from polarization with distant lighting estimation. I[EEFE
Transactions on Pattern Analysis and Machine Intelligence,
2023. 3

Youwei Lyu, Heng Guo, Kailong Zhang, Si Li, and Boxin
Shi. SfPUEL: Shape from polarization under unknown envi-
ronment light. Advances in Neural Information Processing
Systems (NeulPS), 2024. 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020. 1, 2

Miyazaki, Tan, Hara, and Ikeuchi. Polarization-based in-
verse rendering from a single view. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV),2003. 3

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics,
2022. 2

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3D representations without 3D supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2020. 2

Michael Oechsle, Songyou Peng, and Andreas Geiger.
UNISURF: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV),2021. 2

William AP Smith, Ravi Ramamoorthi, and Silvia Tozza.
Height-from-polarisation with unknown lighting or albedo.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2018. 3

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 1,2,7

Bruce Walter, Stephen R Marschner, Hongsong Li, and Ken-
neth E Torrance. Microfacet models for refraction through
rough surfaces. In Proceedings of the 18th Eurographics
conference on Rendering Techniques, 2007. 4

Haoyuan Wang, Wenbo Hu, Lei Zhu, and Rynson WH
Lau. Inverse rendering of glossy objects via the neural
plenoptic function and radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. 2

10

(37]

(38]

(39]

(40]

[41]

(42]

[43]

(44]

(45]

[46]

(47]

(48]

(49]

(50]

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. NeuS: Learning Neural Im-
plicit Surfaces by Volume Rendering for Multi-view Recon-
struction. arXiv preprint arXiv:2106.10689, 2021. 2,4, 5
Xin Wang, Yong Zhang, and Yanchu Chen. Polarized reflec-
tion removal with dual-stream attention guidance. Pattern
Recognition, 2025. 3

Yiqun Wang, Ivan Skorokhodov, and Peter Wonka.
Hf-NeuS: Improved surface reconstruction using high-
frequency details. Advances in Neural Information Process-
ing Systems (NeulPS), 2022. 2

Yiming Wang, Qin Han, Marc Habermann, Kostas Dani-
ilidis, Christian Theobalt, and Lingjie Liu. NeuS2: Fast
learning of neural implicit surfaces for multi-view recon-
struction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2023. 2

LI Yang, WU Ruizheng, LI Jiyong, and CHEN Ying-cong.
GNeRP: Gaussian-guided neural reconstruction of reflec-
tive objects with noisy polarization priors. arXiv preprint
arXiv:2403.11899, 2024. 3

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. Advances in Neural Information Processing Sys-
tems (NeulPS), 2020. 2

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. Advances in Neu-
ral Information Processing Systems (NeulPS), 2021. 2
Keyang Ye, Qiming Hou, and Kun Zhou. 3D Gaussian Splat-
ting with Deferred Reflection. In ACM SIGGRAPH, 2024. 1,
2,3,5,6,7,8

Mulin Yu, Tao Lu, Linning Xu, Lihan Jiang, Yuanbo Xian-
gli, and Bo Dai. GSDF: 3DGS meets SDF for improved ren-
dering and reconstruction. arXiv preprint arXiv:2403.16964,
2024. 2

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient adaptive surface reconstruction in
unbounded scenes. ACM Transactions on Graphics, 2024. 3
Jinyu Zhao, Yusuke Monno, and Masatoshi Okutomi. Po-
larimetric multi-view inverse rendering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022. 3

Chu Zhou, Yufei Han, Minggui Teng, Jin Han, Si Li, Chao
Xu, and Boxin Shi. Polarization guided HDR reconstruction
via pixel-wise depolarization. IEEE Transactions on Image
Processing, 2023. 3

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Surface splatting. In Proceedings of the
28th annual conference on Computer graphics and interac-
tive techniques, 2001. 3

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Ewa splatting. IEEE Transactions on Visual-
ization and Computer Graphics, 2002. 3



PolGS: Polarimetric Gaussian Splatting for Fast Reflective
Surface Reconstruction
Supplementary Material

Yufei Han!, Bowen Tie!, Heng Guo™?*, Youwei Lyu', Si Li**, Boxin Shi**, Yunpeng Jia!, Zhanyu Ma

1Beijing University of Posts and Telecommunications

1

2Xiong’an Aerospace Information Research Institute

3State Key Laboratory of Multimedia Information Processing, School of Computer Science, Peking University

“4National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

{hanyufei, tiebowen, guoheng, youweilv, lisi, mazhanyu}@bupt.edu.cn

shiboxin@pku.edu.cn

A Polarimetric image formation model 1
B Additional results on real-world datasets 1
B.1. Comparison on PANDORA [5] . . ... .. 2
B.2 Comparison on RMVP3D [7] . .. ... .. 2
C Additional results on synthetic dataset 2
C.1. Comparison on SMVP3D [7] . ... .. .. 2
D Analysis of SH coefficient adjustment 2
E Implementation details 4
E.1. Experiment settings . . . . .. ... .... 4
E.2. Training and Evaluation . . . ... ... .. 4
F. Failure case 4
G Limitations 5

A. Polarimetric image formation model

In this section, we provide a more detailed explanation of
the polarimetric theory utilized in our method.

According to the polarized Bidirectional Reflectance
Distribution Function (BRDF) model [1], the output Stokes
vector s,(v) can be separated into diffuse and specular
components as:

So(v) = | Hys;(w) dw +
Q Q

H;s;(w) dw. (D

The diffuse and specular Stokes components under a single

xibeil560@163.com

light source can be formulated respectively as:

T

T cos(2¢y)

=T, sin(2¢,) |’ 2)
0

Hgsi(w) = paL(w)w 0T} T}

R+
DG | R~ cos(2¢p,)
AnTv | —R ™ sin(2¢y)
0

Unlike PANDORA [5] and NeRSP [7], we use the Gaus-
sian Splatting structure to represent the diffuse compo-
nent instead of a complex implicit Multi-Layer Perceptron
(MLP) network. We also use a cubemap encoder followed
by 3DGS-DR [9] to predict the environment map and the
specular component from different views. Therefore, we
define the diffuse color C' = [, pL(w)w "nT;"T; dw and
specular color L, = ps [, L(w)% dw, and the final
So(v) can be represented as:

H;s;(w) = psL(w) 3)

T+ R*
_ | Ty cos(2¢n) R~ cos(2¢n)
o) = O 7 sin@an) | I | <R sin@on) |- @
0 0

To make the diffuse color view-independent, we adjust
the order of the spherical harmonics (SH) coefficients to
zero, facilitating the radiance decomposition. In Section D,
we conduct an experiment to show the differences resulting
from the SH coefficient adjustment under different numbers
of input views.

B. Additional results on real-world datasets

This section presents more results on real-world datasets
tested with different methods.
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Figure 1. Qualitative shape recoveries on PANDORA [5].
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Figure 2. Qualitative shape recoveries on RMVP3D [7].

B.1. Comparison on PANDORA [5]

Figure 1 illustrates mesh reconstruction results using differ-
ent methods on PANDORA [5]. The qualitative comparison
demonstrates that our PolGS achieves superior reconstruc-
tion quality compared to other 3DGS-based approaches.

B.2. Comparison on RMVP3D [7]

Figure 2 presents the mesh reconstruction results using dif-
ferent methods on RMVP3D [7]. The qualitative results in-
dicate that our PolGS not only surpasses other 3DGS-based
approaches but also achieves performance closer to SDF-
based methods in a shorter time.

C. Additional results on synthetic dataset

In this section, we display more results on the synthetic
dataset tested with different methods.

C.1. Comparison on SMVP3D [7]

Figure 3 shows the surface normal estimation results us-
ing different methods on SMVP3D [7]. The qualitative
and quantitative results both demonstrate that our PolGS
achieves better reconstruction quality compared to other
3DGS-based approaches.

D. Analysis of SH coefficient adjustment

In the main paper, we display the surface normal prediction
before and after the SH (Spherical Harmonics) coefficient
adjustment. In Fig. 4, we provide additional experimental
results with different input numbers of views, along with SH
coefficient adjustment. We show the diffuse and specular
separation with SH coefficients of order O and 3 with input
number views 9 and 18. It can be observed that the ability to
perform radiance decomposition decreases as the SH coef-
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Figure 3. Qualitative comparisons on surface normal estimation of SQUIRREL in SMVP3D [7], where our 3DGS-based method can
outperform existing methods based on the same representation and achieves comparable results with SDF-based methods such as NeRSP [7]

and PANDORA [5] while with higher efficiency.

ficient order increases, especially when the number of input nomenon further demonstrates the reasonableness of our ad-
views is not significantly high. However, with more input justment of the SH coefficients.

views, the use of higher-order spherical harmonic functions

tends to better fit the diffuse color, so the difference with

the Oth-order results is not as significant. The above phe-
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Figure 4. Radiance decomposition results obtained using different
spherical harmonic (SH) coefficient orders, specifically 0, 1, and
3.

E. Implementation details

In this section, we introduce more implementation details
about experiment settings and our training strategy.

E.1. Experiment settings

We test our model and compare it with other methods on
three datasets: one synthetic dataset (SMVP3D [7]) and two
real-world datasets (PANDORA [5] and RMVP3D [7]).

SMVP3D [7] This dataset contains five objects, and the
input Stokes parameters and images are all at a resolution
of 512 x 512 pixels. We select 36 different views around
each object to ensure adequate coverage. The specific input
views are displayed in Fig. 5 (a).

PANDORA [5] The PANDORA [5] dataset includes
three objects, and we select two of them for testing. The
original input resolution is 2048 x 2448, which we resize
to 512 x 612 during training and evaluation. We use 35
views to train on each object. The specific input views are
displayed in Figure 2(b).

RMVP3D [7] Containing four objects, we select three
from the RMVP3D [7] dataset for testing. The original
input resolution is 1024 x 1224, resized to 512 x 612 for
consistency during training and evaluation. We employ 35
views to train on each object. The specific input views are
displayed in Figure 2(c).

E.2. Training and Evaluation

During the training period, we first perform 1,000 epochs
for warm-up. The total number of training epochs is 15,000,

Figure 5. Visualization of view distributions of different datasets.
(a) Input views display on SMVP3D [7]. (b) Input views display
on PANDORA [5]. (¢) Input views display on RMVP3D [7].

meaning we introduce the polarimetric loss £,,; and per-
form radiance decomposition after the initial 1,000 epochs.

After training, we use the mesh extraction method from
Gaussian Surfels [4]. Specifically, we set the depth coeffi-
cient to 8 to reduce artifacts from the generated point cloud.

F. Failure case

As shown in Fig. 3, the reconstruction results are not sat-
isfactory, especially for the DRAGON model. This is due
to the fact that the reconstructed objects are elongated, and
the quality of the reconstructed mesh decreases consider-
ably when the input view is not in the form of an equatorial
surround as in PANDORA [5] or RMVP3D [7]. Addition-
ally, the number of input views greatly affects the quality of
the reconstruction, as can be observed in the 3DGS-based
approach,such as 3DGS-DR [9] and Re-3DGS [6]. In their
paper, with 100 input images as training data, they are able
to recover the normal vectors very well. However, in our
experiments, only 30 — 40 views were used as inputs, so
both our results and other 3DGS-based methods are much
less effective in shape recovery. There is still a gap between
this and SDF-based methods, and this is an area for future
improvement.



G. Limitations

Although we utilize the additional polarimetric prior to
constrain the surface normal representation, our method
relies on assumption of an unpolarized environment
light and ignores the inter-reflections among the sur-
faces. These constraints may limit its practicality
in real-world scenarios.  Furthermore, the polarimet-
ric information can be compromised by noise in real-
world data, potentially affecting the accuracy of our re-
sults.
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