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Abstract

This paper addresses the challenge that current event-
based video reconstruction methods cannot produce static
background information. Recent research has uncovered
the potential of event cameras in capturing static scenes.
Nonetheless, image quality deteriorates due to noise inter-
ference and detail loss, failing to provide reliable back-
ground information. We propose a two-stage reconstruc-
tion strategy to address these challenges and reconstruct
static scene images comparable to frame cameras. Build-
ing on this, we introduce the URSEE framework designed
for reconstructing motion videos with static backgrounds.
This framework includes a parallel channel that can simul-
taneously process static and dynamic events, and a network
module designed to reconstruct videos encompassing both
static and dynamic scenes in an end-to-end manner. We also
collect a real-captured dataset for static reconstruction,
containing both indoor and outdoor scenes. Comparison
results indicate that the proposed method achieves state-of-
the-art performance on both synthetic and real data.
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Project page: https://github.com/gaoqiyao1997/URSEE

1. Introduction

Event cameras are a novel type of neuromorphic sensors
that introduce a paradigm shift in visual representation by
responding to brightness changes rather than capturing ab-
solute light intensity at a fixed rate [16, 33]. Each event
pixel operates asynchronously and triggers a stream of
events for dynamic scenes with high temporal resolution
[6, 9, 37], leading to their widespread application in dy-
namic vision tasks [12, 19, 36]. To enable event cameras
to leverage the mature vision algorithms designed for con-
ventional frame cameras, event-based video reconstruction
methods have been developed to bridge the gap stemming
from the disparate output formats. However, current event-
based video reconstruction methods [2, 8, 20, 22, 26, 39]
often overlook restoring static backgrounds, resulting in a
lack of background detail in reconstructed videos. While
incorporating a frame-based camera may mitigate this is-
sue, it diminishes the benefits associated with processing
pure event streams, especially in terms of data efficiency.

Recent work has made progress in reconstructing static
scenes from event streams, broadly categorized into two ap-
proaches based on whether external devices are required.
Han et al. [13] control active illumination and EvTemMap
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[1] adjusts transmittance to trigger sufficient events for
static scene reconstruction. Still, the application of these
methods is limited by the need for specialized light sources
or custom lenses. To eliminate the need for external devices,
Cao et al. [3, 4] and Gao et al. [11] model the statistical rela-
tionship between noise events and scene intensity to enable
static scene reconstruction under constant lighting. Nev-
ertheless, these methods suffer from significant noise inter-
ference and detail loss, resulting in low-quality outputs. Be-
sides, existing methods [11, 26] struggle to reconstruct both
backgrounds and motion concurrently when facing scenes
containing both static and dynamic elements. While Cao et
al. [3] propose fusing backgrounds into motion videos re-
constructed via E2VID [26] using masks, this approach is
capped by the performance of the external network and the
fusion process may cause artifacts at mask boundaries.

In this paper, we address the above challenges and pro-
pose a method for the Unified Reconstruction of Static and
dynamic scEnes from Events, named URSEE, which car-
ries the meaning of “universal see” all scenes of event cam-
era capturing. Firstly, we measure the event-triggering rate
within static scenes in a wide illumination range and an-
alyze the noise impact under underexposure and overex-
posure. Based on this, we design URSEE as a two-stage
strategy to reconstruct videos. The first stage introduces
a convolutional integration method for static scene recon-
struction to prevent noise accumulation and event satura-
tion in existing methods. The second stage comprises a
parallel channel to reconstruct videos featuring both static
and dynamic scenes in an end-to-end manner. Furthermore,
we build a real-captured event dataset for static scene re-
construction comprising diverse indoor and outdoor static
scenes, and a dedicated synthetic dataset for static-dynamic
scene reconstruction comprising scenes with varying sce-
narios for network training. The experimental comparison
results with existing methods demonstrate the superior re-
construction performance of our proposed method, which
also generalizes well to real-captured data. Our contribu-
tions are summarized below:

1. We analyze the influencing factors of event-based static
reconstruction and propose a convolutional integration
method and a denoising network, achieving state-of-the-
art reconstruction results.

2. We introduce a unified framework URSEE to address the
incompatibility between static and dynamic event pro-
cessing prevalent in current methods. This framework
enables end-to-end reconstruction of motion videos with
static backgrounds from events for the first time.

3. We establish a real-captured dataset E-Static for event-
based static scene reconstruction, comprising diverse in-
door and outdoor static scenes, and generate a synthetic
dataset E-StaDyn with varying static backgrounds and
dynamic foregrounds.

2. Related Work

2.1. Event-based static reconstruction
Event-based static reconstruction methods can be broadly
divided into two categories: with and without extra devices.
The former requires additional equipment, such as active
light sources, to create light changes. The latter exploits
naturally occurring ambient light changes and necessitates
no specialized hardware.

Shaw et al. [30] and Tulyakov et al. [34] combined event
cameras and traditional cameras to fuse high-quality image
information with complementary high-frequency and dy-
namic range information from events. Han et al. [13] pro-
posed a method for recovering scene radiance by analyzing
the transient event frequency during the split second of turn-
ing on the light. While effective in certain scenarios, these
methods are limited by the need for specialized equipment.

Gao et al. [11] explored how event triggering rates corre-
late with object surface grayscale, focusing on factors like
surface reflectance affecting event camera responses. Ga-
lor et al. [10] suggested reconstructing static scene inten-
sity images by pixel-wise integration of event streams. Cao
et al. [3, 4] extended this work by analyzing the noise char-
acteristics of these responses. However, these methods are
vulnerable to random noise and extreme pixel values during
long integrations, leading to poor-quality reconstructions.
URSEE improves the reconstruction quality of static images
by introducing a convolutional integration method.

2.2. Event-based dynamic reconstruction
Benefiting from their high temporal resolution and high
dynamic range, event cameras are ideal for dynamic vi-
sual tasks such as high-speed motion capture [7, 18, 32].
Rebecq et al. [26] introduced a recurrent network, named
E2VID, that segments the incoming event stream into se-
quential spatio-temporal windows of events to reconstruct
high-frame-rate videos. Stoffregen et al. [32] proposed
a strategy to obtain high-quality videos by supplement-
ing diversity datasets. Scheerlinck et al. [29] developed
a lightweight network for fast video reconstruction from
events. Cadena et al. [2] further introduced the SPADE-
E2VID neural network model, which improves the quality
of early frames in reconstructed videos and enhances over-
all contrast. Wang et al. [35] proposed a method based on
conditional generative adversarial networks (cGANs), using
stacks of space-time coordinates of events as input to re-
construct high-dynamic-range images and high-frame-rate
videos. Nevertheless, these methods are inadequate for han-
dling static scenes where only a few events are triggered,
resulting in a lack of background information in the recon-
structed videos. The proposed URSEE adopts a two-stage
framework to reconstruct both static and dynamic scenes
from events.
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Figure 2. The mapping between ambient brightness, reflectance,
and event count. (a) Statistical and fitting results of the event
count for capturing the grayscale patches of the Macbeth Col-
orChecker under various lighting conditions. (b)/(c) The mapping
relationship between ambient brightness and event counts with a
reflectance of 0.09/0.36. (d) The event count map of real-captured
events under different lighting conditions. Left: 20 lux. Middle:
170 lux. Right: image reference.

3. Static Scene Reconstruction

In this section, we measure the response of event cam-
eras in static scenes over a wide range of illumination and
analyze the relationship between ambient brightness, re-
flectance, and event count under different lighting condi-
tions in Sec. 3.1, present the convolutional integration pro-
cess in Sec. 3.2 and the denoising module in Sec. 3.3.

3.1. Response of events in static scene

Recent studies [3, 4, 11] demonstrate that event cameras
can generate stable event streams containing scene infor-
mation even when there are no significant changes in light
intensity, such as in environments illuminated by constant
light sources or natural daylight. The events triggered in
these situations are referred to as static events, and the event
count of each pixel is closely associated with scene inten-
sity. By integrating the event stream over time, an initial
grayscale image can be reconstructed. However, the rela-
tionship between the event count and varying illumination
conditions has been rarely explored, limiting the generaliz-
ability of integration-based reconstruction.

Therefore, we experimentally measure the event trigger-
ing rate (i.e., event count per unit time) in static scenes
across a wide range of illumination conditions (2.7 lux to
194.7 lux) and scene reflectance, and explicitly character-
ize the distinct static response behaviors of event cameras
under varying lighting conditions. This provides empiri-
cal support for event-based static reconstruction methods.
Specifically, we use a DC light source with precisely ad-
justable brightness in an optical darkroom to control scene
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Figure 3. Qualitative and quantitative comparison of pixel-wise
integration and convolutional integration. Top: Comparison of re-
construction results. Bottom: Pixel distribution statistics results.
For quantitative comparison, we select the same test set of 96 dif-
ferent indoor and outdoor scenes. The scores of metrics for this
evaluation are as follows (pixel-wise vs. ours): PSNR is 5.755 vs.
11.471. SSIM is 0.022 vs. 0.233. LPIPS is 1.381 vs. 0.748.

brightness while minimizing the effects of light flicker,
and employ an event camera (Prophesee EVK4) to cap-
ture grayscale patches of a standard Macbeth ColorChecker.
The ambient brightness values are obtained by averaging
multiple measurements taken with a lux meter, and the re-
flectance values correspond to the fixed parameter of Col-
orChecker. By measuring the average event triggering rate
for capturing each grayscale block under different condi-
tions, we map the response trends of the event camera to
the static scene, as shown in Fig. 2 (a).

The experimental results indicate a unique mapping be-
tween the event counts and the grayscale values within
scenes illuminated by a constant light source. For grayscale
patches with lower reflectance, as illustrated in Fig. 2 (b),
the response curve is monotonically increasing with ambi-
ent brightness. Conversely, for higher reflectance levels, de-
picted in Fig. 2 (c), the response curve reveals a notable in-
flection point. This demonstrates that the response of event
pixels to static scenes follows a specific pattern: when the
illuminance received by the sensor is below a threshold,
the event count increases with lighting intensity. However,
above the threshold, the event count slowly decreases as
the intensity rises, which is validated by real-captured data
shown in Fig. 2 (d). We also observe that as scene illumina-
tion increases, the event count trend stabilizes, resulting in
low distinguishability of event count values. These obser-
vations not only reveal the rules for event-based static scene
reconstruction but also provide guidance for our reconstruc-
tion method.

3.2. Convolutional integration for reconstruction
Traditional methods for reconstructing static scenes [10, 11]
suffer from low image quality and loss of detail. By statisti-
cally analyzing the pixel value distributions of reconstructed
images, we identify two primary causes for these issues.
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Figure 4. The pipeline of the proposed URSEE framework. The raw event stream, consisting of both motion-triggered dynamic events
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parallel channels, resulting in the production of a static background frame and a sequence of dynamic voxel grids. By concatenating these
with an event separation label tensor, a fused tensor is formed, which is then fed into the ERSD Module to generate a sequence of motion
frames characterized by high-quality static backgrounds.

First, noise accumulated during the integration process sig-
nificantly degrades image quality. Second, prolonged in-
tegration leads to event saturation [28], exceeding the sen-
sor’s effective response range. This causes pixel values in
the reconstructed image to converge to 0 or 255, reducing
grayscale images to binary ones, leading to distortion of im-
age contrast and a reduction in information content.

We propose a convolutional integration method to effec-
tively address the two aforementioned challenges. Rather
than performing pixel-wise integration like existing meth-
ods, we employ a 3×3 convolutional kernel with a mean fil-
ter to perform convolutional integration over the pixel plane.
Specifically, we first calculate the event count for each pixel
within the integration time. Then, after padding the pixel
plane, the value of each pixel is defined by the normalized
convolution result. Fig. 3 qualitatively and quantitatively
compares the existing pixel-wise integration method with
the proposed convolution integration method. The statisti-
cal analysis of the pixel value distribution in images recon-
structed using different methods indicates that our approach
demonstrates a higher concentration of mid-range pixel val-
ues. This approach mitigates the influence of pixels with
zero values and extreme values, effectively alleviating the
pixel value polarization and thereby preserving more com-
prehensive grayscale characteristics.

3.3. Denoising module for quality improvement

To further enhance the reconstructed image quality to a level
comparable with frame cameras, we propose a fully convo-
lutional network with a U-Net architecture [27] as a denois-
ing module, termed the “SRD Module” (Static Reconstruc-
tion Denoising). Inspired by Chen et al. [5], we employ
layer normalization within each convolutional block to en-

sure a more stable training process. Furthermore, we imple-
ment a channel attention mechanism to effectively capture
and represent the global characteristics of noise, thereby
improving the network’s robustness and accuracy. The en-
coder architecture utilizes strided convolutions with a stride
of 2, optimizing the downsampling process. Conversely,
the decoder blocks employ bilinear upsampling followed
by convolutional layers, ensuring high-resolution feature
restoration and refined image reconstruction.

Due to the fact that existing event simulators, e.g., V2E
[14] and DVS-Voltmeter [17], focus on generating events
triggered by dynamic scenes while neglecting events trig-
gered by static backgrounds, the event simulation datasets
they generate are inadequate for training models that match
the distribution of real-captured static event features. To
address this, we use a hybrid imaging system with one tra-
ditional RGB camera and one event camera to collect a real-
world dataset that includes static event streams along with
high-quality frames for model training. A more comprehen-
sive introduction is provided in Sec. 5.1.

4. Static-Dynamic Scene Reconstruction

Previous event-based video reconstruction methods [2, 21,
23, 26] have predominantly focused on moving objects
while overlooking static backgrounds. In contrast, recent
research on static reconstruction [10, 11] has been dedicated
solely to static scenes. Currently, there are no satisfactory
approaches for reconstructing videos that encompass both
dynamic and static elements. To reconstruct global scenes
and thereby expand the applicability of event cameras, the
URSEE designs an end-to-end video reconstruction frame-
work capable of reconstructing moving foregrounds while
maintaining static background information. Specifically,
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Figure 5. Qualitative comparisons on our E-static dataset for grayscale image reconstruction. (a) Events. (b) Ground Truth. (c)∼(j)
Reconstruction images of integral, E2VID [26], FireNet [29], SSL [22], ET-Net [38], EVSNN [41], E2HQV [25], and ours.

Table 1. Quantitative comparison of our method with mainstream approaches for event-based static image reconstruction on our E-static
dataset. Arrows ↑ (↓) indicate that higher (lower) values are preferable. Best performance is highlighted in bold.

E2VID [26] FireNet [29] SSL [22] ET-Net [38] EVSNN [41] E2HQV [25] E2VID (retrained) [26] Ours

PSNR ↑ 9.35 7.90 8.78 8.14 7.12 6.49 17.94 22.43
SSIM ↑ 0.330 0.292 0.039 0.213 0.287 0.130 0.658 0.860

LPIPS ↓ 0.808 0.935 1.250 0.880 0.797 0.880 0.369 0.244

URSEE demonstrates robust compatibility in the concur-
rent processing of both static and dynamic events. It em-
ploys distinct and appropriate feature extraction and fusion
strategies for static and dynamic event types, ultimately re-
constructing videos complete with background details.

Figure 4 presents the pipeline of the URSEE framework.
Initially, static and dynamic events are separated from the
raw event stream and processed through parallel channels to
extract their respective features. For static events, the con-
volutional integration method and denoising module, as de-
scribed in Sec. 3.2 and Sec. 3.3, are utilized to reconstruct
the static background with high fidelity. Dynamic events are
transformed into voxel grids [40] to retain their spatiotem-
poral information. The reconstructed background and dy-
namic voxel grids are subsequently concatenated for fea-
ture fusion, incorporating an event separation label mech-
anism to accurately identify the input source for enhanced
feature extraction. At the core of the URSEE framework
is the proposed ERSD Module (Event-based Reconstruc-

tion Network with Static and Dynamic Elements), a fully
convolutional network that includes ConvLSTM modules
[31]. This network takes the fused feature tensor as input
and performs supervised learning to reconstruct the target
video from the event data.

Section 4.1 details the proposed spatiotemporal window-
based method for separating static and dynamic events, and
Sect. 4.2 elaborates on the ERSD network’s architecture.

4.1. Event separation
We propose a spatiotemporal window-based method for
separating static and dynamic events from a raw event
stream. A window, with a spatial scale of 20×20 pixels and
a temporal scale of 10ms, slides non-overlappingly across
the pixel plane, recording the spatiotemporal information of
each event. Within each window, a global threshold is used
to distinguish between static and dynamic events. Events
within a window are classified as dynamic if their count ex-
ceeds the threshold, representing a large number of events



triggered in this region at the moment. Otherwise, they are
classified as static background events.

For static events, we employ the reconstruction strategy
outlined in Sec. 3.2 to generate a static background image.
For dynamic events, we transform them into voxel grids
[42] to maintain their spatiotemporal characteristics. To en-
able the network to learn both static and dynamic features
concurrently, we concatenate these into a unified tensor for
input. During this integration, an event separation label ten-
sor is applied to label the origin of each feature, thereby
aiding the network in more precise feature extraction.

4.2. ERSD module architecture

The ERSD module is the core of the URSEE framework,
designed as a convolutional neural network that takes fused
tensors as input and outputs a sequence of frames with static
backgrounds and moving foregrounds. Its purpose is to ex-
tract dynamic event features from voxel grids and static
event features from reconstructed frames through super-
vised learning, thereby reconstructing both simultaneously.

Our neural network is a recurrent, fully convolutional
network employing a U-Net architecture [27], widely
adopted for image reconstruction tasks. Its primary struc-
ture comprises an introduction layer, followed by NE recur-
rent encoding layers, NM intermediate layers, ND decod-
ing layers, and a final image prediction layer. As our input
is a concatenated tensor encompassing a grayscale image, a
voxel grid, and an event separation label tensor, the predic-
tion layer has Bin+2 input channels, where Bin represents
the number of channels in the custom voxel grid, set to 5
in this work. Inspired by Chen et al. [5], we design a cus-
tom convolutional block, incorporating layer normalization
and a channel attention mechanism to stabilize training and
extract global features. Each encoding layer consists of a
custom convolutional block followed by a ConvLSTM [31],
while the intermediate and decoding layers consist solely of
custom convolutional blocks.

5. Experiment

Since this paper encompasses both event-based static image
and dynamic video reconstruction. For the static image re-
construction task, we compare our proposed convolutional
integration method and SRD-Module against mainstream
methods on our E-Static dataset, including pixel-wise inte-
gration methods [11], E2VID [26], FireNet [29], SSL [22],
ET-Net [38], EVSNN [41], and E2HQV [25]. For the video
reconstruction task, we compare our proposed method with
the above methods on our E-StaDyn dataset.

We employ PSNR, SSIM, and LPIPS metrics to evalu-
ate the quality of the reconstructed images. Notably, we
retrained E2VID [26] on the proposed datasets for compar-
ative analysis to verify the incompatibility of mainstream

reconstruction methods with static events and to further
demonstrate the effectiveness of our approach.

In this section, we introduce the training and evaluation
datasets in Sec. 5.1, the training process in Sec. 5.2, the
comparison for static image reconstruction in Sec. 5.3, and
the comparison for video reconstruction in Sec. 5.4.

5.1. Training and evaluation dataset
Event-based static scene reconstruction is an emerging field
with limited research and datasets. Therefore, we introduce
two new datasets, E-Static and E-StaDyn, for model train-
ing and method evaluation.

E-Static is a real-world dataset captured from diverse
indoor and outdoor static scenes using a hybrid event-
frame camera system, which consists of a traditional RGB
camera (Alvium1800 U-240c) and an event camera (Sony
IMX636). A beam splitter with a light ratio of 1: 9 (event:
frame) is used to align their fields of view, avoiding exces-
sively bright illumination on event pixels that could make
it difficult to reconstruct clear images from static events.
Based on empirical evaluation, we set the optimal ON and
OFF thresholds of the event camera to be -17 and -50, re-
spectively, ensuring the generation of sufficient static events
for reconstruction. It comprises 200 sets of raw event
streams alongside corresponding high-quality ground truth
frames. For training, the original 1280× 720 images are di-
vided into six 512×512 sub-images, yielding 1290 training
and 96 testing samples.

E-StaDyn is a synthetic dataset comprising 130 distinct
scenes, each characterized by a unique static background
and dynamic foreground. These scenes are generated by
pairing diverse high-quality images with different 3D mod-
els exhibiting randomized motion. Each scene is rendered
into 600 consecutive frames using Blender software to serve
as ground truth data. These frames are then processed
through the DVS-Voltmeter [17] simulator to generate syn-
thetic event streams. The dataset is divided into 115 scenes
for training and 15 scenes for testing.

5.2. Training procedure
In this study, we train two neural networks, the SRD mod-
ule, and the ERSD module, for distinct reconstruction tasks.
During training, these modules utilize different datasets and
data augmentation techniques, which we will describe in
detail. Both of them are trained on an NVIDIA RTX 3090
GPU using PyTorch [24] and employ the ADAM optimizer
[15] with a learning rate of 0.0001.

The SRD module is designed to leverage supervised
learning to extract noise features from reconstructed im-
ages, thereby enhancing the quality of images reconstructed
through convolution integration. We utilize our E-Static
dataset for training and testing the model, augmenting the
data with random two-dimensional rotations, horizontal and



Figure 6. Qualitative comparisons on our E-StaDyn synthetic dataset for dynamic video reconstruction. Upper: E2VID [26]. Middle:
Our URSEE framework. Bottom: Ground truth. E2VID can reconstruct portions of the static background because the movement of the
foreground across the background alters the surface light intensity, thereby triggering key events used for reconstruction.

Table 2. Quantitative comparison of our method with mainstream approaches for event-based dynamic video reconstruction on our E-
StaDyn dataset. Arrows ↑ (↓) indicate that higher (lower) values are preferable. Best performance is highlighted in bold.

E2VID [26] FireNet [29] SSL [23] ET-Net [38] EVSNN [41] E2HQV [25] E2VID [26] (retrain) Ours

PSNR ↑ 14.01 9.81 9.69 13.67 8.04 9.71 18.45 31.97
SSIM ↑ 0.725 0.607 0.599 0.701 0.453 0.532 0.792 0.959

LPIPS ↓ 0.458 0.574 0.609 0.489 0.673 0.595 0.448 0.122

vertical flips, and random cropping (crop size 256 × 256).
The network employs the Mean Squared Error (MSE) as the
loss function to ensure the quality of the reconstructed im-
ages. After approximately 8 hours of training over nearly
500 epochs, the model converges, significantly improving
the quality of the initially reconstructed frames with an en-
hancement of 11 dB.

The ERSD module employs the MSE as the loss func-
tion to ensure the quality of the reconstructed images. Dur-
ing training, each scene from our E-StaDyn dataset is di-
vided into groups of sequence frames with a length of 40.
To enhance the data, operations such as adding hot pixels
to sequences, adding noise to voxel grids, and introducing
random pause mechanisms are applied. Since each encod-

ing layer includes a ConvLSTM module, the low quality of
the initial frame can significantly disrupt the reconstruction
of subsequent frames. Therefore, we discard the first and
the last sequences of each data group for improved training.

5.3. Comparison of static image reconstruction

The qualitative comparison of our proposed two-stage
static reconstruction strategy with mainstream reconstruc-
tion methods for static image reconstruction is presented in
Fig. 5, while the quantitative comparison results are shown
in Table 1. The results indicate that our method successfully
reconstructs static scenes, achieving results comparable to
frame cameras, whereas the other methods fail to extract
static background information, demonstrating their incom-



Figure 7. Qualitative comparisons on real-world data for dynamic video reconstruction. Upper: E2VID [26] (pretrained). Middle:
E2VID [26] (retrained), retrained on our E-StaDyn dataset for 100 epochs followed by inference. Bottom: Our URSEE framework.

patibility with static events. Additionally, we show the color
reconstruction results of static scenes using our method in
the supplementary material.

5.4. Comparison of dynamic video reconstruction

The qualitative comparison of our proposed URSEE frame-
work with mainstream reconstruction methods on our E-
StaDyn synthetic dataset is depicted in Fig. 6, with the com-
parison on real data illustrated in Fig. 7. Quantitative com-
parison results are summarized in Table 2. E2VID can par-
tially reconstruct backgrounds because moving objects al-
ter light intensity as they pass the background, triggering
certain feature events that can be used for background re-
construction. However, this is dependent on specific global
motion patterns and lighting conditions, which limits its ap-
plicability and reconstruction performance, as reflected by
detail loss and significant distortion shown in Fig. 6. In
contrast, our method achieves independent reconstruction
of high-fidelity static backgrounds, providing the proposed
framework with robust performance on both synthetic and
real data. Even when retrained on the proposed dataset,
E2VID fails to reliably reconstruct backgrounds, underscor-
ing the model’s incompatibility with static events.

6. Conclusion
In this paper, we propose the URSEE framework to address
the challenges of noise impact and event integration sat-
uration in existing event-based static video reconstruction
methods. We introduce a convolutional integration method
to mitigate the issue of pixel value polarization and pro-
pose a fully convolutional neural network to learn static
event noise characteristics from the initially reconstructed
images. URSEE enables end-to-end reconstruction of mo-
tion videos with static backgrounds from events for the
first time. The reconstruction results demonstrate that our
method effectively captures the key features of both static
and dynamic events.

Limitation The proposed URSEE framework performs
well under normal lighting conditions, but when the illumi-
nation increases, the quality of static scene reconstruction
encounters a bottleneck, which is limited by the design of
the event sensor. Our next step is to enhance the method
to address a broader range of more complex scenes. Addi-
tionally, this study employs the Prophesee EVK4 device for
scene capturing. For other devices, it is necessary to relearn
their response models to static scenes and noise characteris-
tics. This requires further expansion of the existing dataset
and improvements in model generalization.
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Figure 8. Reconstructed frames of color scenes on E-static dataset. For each scenario, the upper row displays the reconstructed original
frame of the three-color channels without denoising, while the lower row shows the denoised frame.

7. Results on Video Reconstruction

The performance of reconstructing static and dynamic scene
videos is compared in the video file accompanied by this
supplementary material. E2VID (pretrained) [3], E2VID
(retrained), FireNet [4], E2HQV [2], ETNet [5], EVSNN
[6] and SSL [1] are chosen as the compared methods.

# Equal contribution, † Corresponding author
Project page: https://github.com/gaoqiyao1997/URSEE

8. Color Static Scene Reconstruction

We achieve color reconstruction of static scenes for the first
time. One significant challenge with event cameras is their
inability to capture color information. Although the devel-
opment of the DAVIS color sensor offers a solution, its low
spatial resolution and demosaic issues limit its application
in certain scenarios. Our approach involves placing color
filters in front of the event camera lens to separately capture
red, green, and blue color event streams. Through our re-
construction method, we can generate a high-fidelity three-
channel intensity map, which is then fused to produce a full-
color scene frame, as illustrated in Fig. 8.

https://github.com/gaoqiyao1997/URSEE
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