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Abstract—Event cameras are emerging imaging technology that offer advantages over conventional frame-based imaging sensors in
dynamic range and sensing speed. Complementing the rich texture and color perception of traditional image frames, the hybrid camera
system of event and frame-based cameras enables high-performance imaging. With the assistance of event cameras, high-quality
image/video enhancement methods make it possible to break the limits of traditional frame-based cameras, especially exposure time,
resolution, dynamic range, and frame rate limits. This paper focuses on five event-aided image and video enhancement tasks (i.e.,
event-based video reconstruction, event-aided high frame rate video reconstruction, image deblurring, image super-resolution, and high
dynamic range image reconstruction), provides an analysis of the effects of different event properties, a real-captured and ground truth
labeled benchmark dataset, a unified benchmarking of state-of-the-art methods, and an evaluation for two mainstream event simulators.
In detail, this paper collects a real-captured evaluation dataset EVENTAID for five event-aided image/video enhancement tasks, by using
“Event-RGB” multi-camera hybrid system, taking into account scene diversity and spatiotemporal synchronization. We further perform
quantitative and visual comparisons for state-of-the-art algorithms, provide a controlled experiment to analyze the performance limit of
event-aided image deblurring methods, and discuss open problems to inspire future research.

Index Terms—Event camera, image/video enhancement, benchmark dataset, simulated-to-real gap
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1 INTRODUCTION

E VENT cameras, also known as Dynamic Vision Sensors
(DVS) [1], [2], draw on the perception mechanism of the

human retina [3] to sense brightness changes in the scene in
the form of “event” signals [1], [2], [4]. Each pixel of the
event camera compares the current and last light intensity
state on a logarithmic scale and triggers a binary form event
when the intensity variation exceeds the preset threshold
[1], [4]. Such a trigger mechanism enables event cameras
to high-speed (∼ 10µs) perceive dynamic visual scenarios
with a high dynamic range (HDR) (∼ 120dB) while lacking
the absolute radiance intensity recording and static sensing
[1]. With the superior properties of HDR, low latency, and
low redundancy [1], event cameras make it possible to break
through the bottlenecks of computer vision and robotic
technologies based on traditional frame-based cameras.

Thus far, event cameras have shown promising capabil-
ity in solving classical as well as new computer vision and
robotics tasks, including low-level tasks such as high frame-
rate (HFR) video synthesis [5] and HDR image reconstruc-
tion [6], middle-level tasks such as optical flow [7] and scene
depth estimation [8], and high-level tasks such as 3D scene
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reconstruction [9], object tracking [10], object detection [11],
SLAM [12], and autonomous wheel steering [13] tasks.

Due to the special triggering mechanism and much
shorter research times compared to frame-based cameras,
the signal quality of event cameras degrades when the
scenes are relatively static, and suffers from severe noises
and poor color perception [14]. By contrast, traditional
frame-based RGB cameras are the mainstream sensors of
computer vision and robotic technologies that feature rich
color, texture, and semantic information as well as lower
noise. Witnessing and experiencing the success of frame-
based RGB sensors and corresponding algorithms over the
past decades, researchers have built large-scale datasets
[15], various well-designed network architectures [16], and
even foundation models [17] for frame-based vision. Such
sensory motivates researchers to leverage the complemen-
tary advantages of both ends through an “Event-RGB”
hybrid multi-camera fusion [18], [19] and to use the existing
achievements of frame-based cameras for accelerating the
research of event cameras. This fusion has been exten-
sively explored in the field of high-quality imaging. To take
advantage of the high speed and HDR features of event
cameras, break through the traditional imaging bottlenecks,
and meet the image quality requirements of human and
machine vision, researchers have bridged the event and
image modality in recent years [18]–[25]. We classify such
tasks as event-aided (also known as event-guided [26]–[28])
image/video enhancement methods, and we focus on five
event-aided tasks in this paper (as shown in Fig. 1).

To benchmark event-aided image/video enhancement

https://sites.google.com/view/eventaid-benchmark
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Figure 1: 1st row: Five event-aided image/video enhancement tasks. 2nd row: The illustrations of different tasks, when the
event camera and the RGB camera shoot rotating fan blades at the same time and in the same field of view, the event
camera asynchronously triggers positive (blue dot) and negative (red dot) events with high temporal resolution, while the
RGB camera outputs images frame by frame. 3rd row: The Event characteristics that each task used to break through the
performance bottlenecks limited by frames. 4th row: Outputs of different tasks. 5th row: Formulations of each task.

methods with real data, a real “Event-RGB” hybrid multi-
camera system with high-precision spatiotemporal syn-
chronization is necessary. Currently, mainly three types of
“Event-RGB” hybrid multi-camera systems are in use: (1)
As early attempts, ATIS [29] and DAVIS [2], [30] cameras
embed intensity-recording subpixels or conventional Active
Pixel Sensors (APS) with event sensors to “Event-RGB”
simultaneous imaging. This kind of design is the optimal
way to achieve multi-camera spatiotemporal synchroniza-
tion, while there are bottlenecks that lead to severe noise
and low resolution [14] (e.g., the resolution of the widely-
used DAVIS346 [2] is only 346 × 260). (2) To match high-
quality frame cameras, building an event camera and a
frame camera into a dual-camera system becomes another
option [19]. Nevertheless, the different homography matri-
ces of different scene depths make it difficult for this dual-
camera system to avoid spatial matching errors. (3) Wang
et al. [26] and Han et al. [24] first propose a hybrid camera
system that physically co-located an event camera and a
frame camera via a beam splitter, with two cameras sharing
a common field of view. Although there are still problems
of non-portability and unstable matching accuracy, such a
system can easily replace cameras while avoiding field-of-
view misalignment caused by binocular disparity. Based on
the above three hybrid systems, many evaluation datasets
for event-aided image/video enhancement methods have
been proposed (as listed in Table 1). To avoid the imperfect
conditions of the above real systems, using event simulators
to generate events and prepare datasets is also a popular
choice [19], [31], while the unavoidable gap between real-
captured and simulated data [14] (real-sim gap) makes
the benchmark results less convincing to reveal the real
performance of algorithms. As event-aided image/video en-
hancement methods are continuously springing up, a high-

quality real-captured dataset for comprehensive bench-
marking them on a unified scale is urgently needed.

In this paper, we propose a real-world and compre-
hensive evaluation dataset, named EVENTAID, for evaluat-
ing five mainstream event-aided image/video enhancement
tasks, taking into account geometric and photometric align-
ment, temporal synchronization of sensors, and scene di-
versity. All data, including input events and frames and the
ground truth, are real-captured by beam-splitter-mounted
hybrid camera systems. The sub-datasets corresponding
to each task are: EVENTAID-R for event-based video re-
construction, EVENTAID-F for HFR video reconstruction,
EVENTAID-B for image deblurring, EVENTAID-S for image
super-resolution (SR), and EVENTAID-D for HDR image re-
construction. We benchmark 20 state-of-the-art event-based
algorithms and 12 state-of-the-art single-image-based meth-
ods. To evaluate the real-sim gap of event simulators, we
generate events with different simulators and execute the
benchmarking again. To our best knowledge, this is the
first high-quality benchmark dataset for event-aided im-
age/video enhancement tasks with real-captured data, and
the first comprehensive benchmarking of existing methods
in diverse scenes with unified evaluation protocols.

This paper makes the following contributions:

• We categorize five mainstream event-aided im-
age/video enhancement tasks using unified formula-
tions, as well as summarize and compare the existing
evaluation datasets.

• We collect the first real-captured dataset EVENTAID
to evaluate the performance of existing methods
of five tasks, with high accuracy of spatiotemporal
synchronization between two sensors as well as great
scene diversity (61 scenes in total).

• We benchmark a total of 32 state-of-the-art methods
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and statistically analyze their performance. We fur-
ther compare and evaluate the real-sim gap of two
widely used event simulators by referring to the real
data benchmark results.

• Based on our benchmark evaluation, open problems
from different aspects of these five tasks, such as
evaluation metric, feature extraction, artifacts sup-
pression, color restoration, and so on, are discussed
to inspire future research.

2 EVENT-AIDED IMAGING CATEGORIZATION

This section first presents the mathematical form of the
event trigger model and categorizes and formulates existing
event-aided image/video enhancement methods into five
tasks with unified notations. Then, we list, organize, and
summarize existing evaluation datasets for these five tasks.

2.1 Event-aided imaging model formulation
We first formulate the event trigger model and build the
relationship to the image-based counterpart. Consider a
latent spatiotemporal volume in which an intensity field is
sampled by an ideal frame-based camera that can output
blur-free, high-resolution, and HDR intensity images It at
any moment. The event output at t0 can be described as:

Et0 = Γ
{
log(

It0 + b

It0−1 + b
), c+ nevent

}
, (10)

where Γ{θ, c} represents the conversion function from log-
intensity to events, and b is an offset value to prevent
log(0). Γ{θ, c} = 1 when θ ≥ c, indicating a positive
event; Γ{θ, c} = −1 when θ ≤ −c, indicating a negative
event; and Γ{θ, c} = 0 when |θ| < c, indicating that
no event has been fired. nevent represents the perturbation
noise pivoted at the firing threshold c. The duration from
t0 − 1 to t0 corresponds to the minimum response delay of
the event camera. The dead pixels can be interpreted as c
being significantly low or high. In event-aided image/video
enhancement tasks, It is taken as the ground truth.

Here we model five tasks and compare their relation-
ships and differences. Figure 1 shows the illustrations of
input and process for each task as well as the equations to
be solved for each task.

Event-based video reconstruction. The basic task of bridg-
ing events and images that directly reconstructs images
from pure event signals, which can be formulated as a
process of Et0:t1 → It1 , where the Et0:t1 denotes the event
stream triggered between t0 and t1. This is an ill-posed
problem because the event signals only record the intensity
change but not the absolute intensity in the scene, so it is
difficult to accurately measure the light intensity via events.
To solve this problem, Barua et al. [49] propose to use the
optical flow consistency hypothesis and motion compen-
sation to obtain the gradient of images from events, and
then employ the Poisson reconstruction method to restore
the image, i.e., It1 = Fpassion(Fwarp(Et0:t1)) (c.f ., Eq. 1 in
Fig. 1). Deep learning-based methods [5], [20], [50], [51]
directly learn the mapping model from events to images
by It1 = Frec(Et0:t1) (c.f ., Eq. 2). It is worth noting that this
task cannot reconstruct textures in the static scene.

Event-aided HFR video reconstruction. This task aims
to interpolate new frames, i.e., reconstruct latent frames,
between two adjacent frames with the assistance of events,
which is formulated as It0&Et0:t1 → It1 . Since events
record the logarithmic changes of It0 over t0 : t1 with
high time accuracy, the It1 in the logarithmic domain (i.e.,
Lt1 ) can be easily obtained by the events synthesis model
Lt1 = Lt0 +c ·

∫
Et0:t1 (c.f ., Eq. 3), despite the interference of

event noise [52], [53]. In order to improve performance, deep
learning-based methods generally employ the events syn-
thesis model to constraint intensity values and event-based
optical flow estimation to constraint motion trajectories in
reconstructed videos, then use a fusion model to fuse the
two branches and output the final result [19], [23], [54], for-
mulated as It1 = Ffusion(Fsyn(It0 , Et0:t1),Fwarp(It0 , Et0:t1))
(c.f ., Eq. 4).

Event-aided image deblurring. This task aims to restore a
clear image from the long-exposure image suffering from
motion blur, formulated as Iblur&Et0:t1 → Iclear, where
t0 : t1 corresponds to the exposure time period. Pan et al.
[22] find the event-based double integral model to bridge
Iblur and Iclear via events and reconstruct the clear image via
Lclear = Lblur−c·

∫∫
Et0:t1 (c.f ., Eq. 5). Learning-based meth-

ods [43], [55]–[57] continuously improve the deblurring
performance by upgrading the network model. Optical esti-
mation is also introduced to improve performance [42], i.e.,
Iclear = Ffusion(Fsyn(I

blur, Et0:t1),Fwarp(I
blur, Et0:t1)) (c.f .,

Eq. 6). Due to the high temporal resolution of events, most
methods achieve intra-frame interpolation as well.

Event-aided image super-resolution. This task aims to
reconstruct a high-resolution image from a low-resolution
image by converting event-recorded motion information
into sub-pixel shifts, i.e., ILR

t0 &Et0−w:t0+w → ISR
t0 , where

w adjust time window length. EvIntSR [47] and E2SRI
[21], [46] generally convert event data to multiple la-
tent intensity frames and learn to mix the frame se-
quence to achieve super-resolution, expressed as ISR

t0 =
Fmix(I

LR
t0 ,Frec(Et0−w:t0−w+ϵ), . . . ,Frec(Et0+w−ϵ:t0+w)) (c.f .,

Eq. 7), ϵ is the time length of events to convert each latent
frames. EventSR [58] can also achieve image SR, while it
mainly learns the mapping from LR images generated by
events to HR images through GAN-based methods [59].

Event-aided HDR image reconstruction. This task aims to
recover an HDR image from a low dynamic range (LDR) im-
age by extracting texture features of over-/under-exposed
areas from events in dynamic scenes, i.e., ILDR

t1 &Et0:t1 →
IHDR
t1 . Han et al. [24], [48] first explore this task and pro-

pose to reconstruct an intensity frame from events before
fusing it with input LDR images via a refinement network
module, expressed as IHDR

t1 = Ffusion(I
LDR
t1 ,Frec(Et0:t1)) (c.f .,

Eq. 8). Yang et al. [28] eliminate the step of reconstructing
the image from events and recover an HDR image by
IHDR
t1 = Ffusion(I

LDR
t1 , Et0:t1) (c.f ., Eq. 9).

2.2 Evaluation datasets for event-aided imaging

The field of conventional image/video enhancement al-
ready has a large amount of research on benchmark evalua-
tion. For example, Köhler et al. [60] propose a real-captured
dataset to benchmark image SR task and Rim et al. [61]
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Table 1: The summary of existing evaluation datasets of five event-aided image/video enhancement tasks. The following
four characteristics as we marked in the 1st row are compared: 1. Real-captured data: the input images and events, and
ground truth are real-captured or simulated. 2. Spatiotemporal synchronization of two sensors. 3. Event/Frame-based
sensor: the spatial resolution, color imaging type, and frame rate parameters of cameras. 4. Scene diversity. (“-” represents
a “not applied” attribute. The resolution and frame rate of some datasets are not completely consistent, we use “∼” and
“<” to represent the approximate value distribution. “∗” indicates indirect estimation due to the dataset are not public and
whose frame rates are unspecified in the paper.

Simulated
or

real dataset
Dataset name

Real-captured data Spatiotemporal synchronization of two sensors Event sensor Frame-based sensor Scene diversity

Input
image

Input
events

Ground
truth Spatial matching Temporal

synchronization Camera model Spatial
resolution

Spatial
resolution

Color /
gray

Frame
rate

Indoor+
Outdoor

Ego+
Local

motion

Slow+
Fast

motion

High
texture

Event-based
video reconstruction

Simulation EventNFS [32] - ✓ % Display+camera calibration Mark points matching DAVIS346 mono 222×124 222×124 color - ✓ ✓ ✓ ✓

Real

IJRR [33] - ✓ ✓ Frame+event sensor Chip synchronization DAVIS240 240×180 240×180 gray ∼24 FPS ✓ ✓ ✓ ✓

HQF [34] - ✓ ✓ Frame+event sensor Chip synchronization DAVIS240 240×180 240×180 gray 17-25 FPS ✓ ✓ ✓ ✓

DVS-Dark [35] - ✓ ✓ Frame+event sensor Chip synchronization DAVIS240 240×180 240×180 gray ∼10 FPS∗ ✓ % % %

MVSEC [36] - ✓ ✓ Frame+event sensor Chip synchronization DAVIS346 mono 346×260 346×260 gray 50 FPS ✓ ✓ ✓ %

CED [37] - ✓ ✓ Frame+event sensor Chip synchronization DAVIS346 color 346×260 346×260 color ∼33 FPS ✓ ✓ % %

EVENTAID-R - ✓ ✓ Beam splitter External clock triggering Prophesee ∼ 954× 636 ∼ 954× 636 color 20-150 FPS ✓ ✓ ✓ ✓

Event-aided
high frame rate

video reconstruction

Simulation
Tulyakov et al. [19] ✓ % ✓ - - Simulation 1280×720 1280×720 color - ✓ ✓ ✓ ✓

GoPro+ESIM [38] ✓ % ✓ - - Simulation 1280×720 1280×720 color 240 FPS ✓ ✓ ✓ ✓

Real

SloMo-DVS [39] ✓ ✓ ✓ Frame+event sensor Chip synchronization DAVIS240 240×180 240×180 gray <30 FPS ✓ ✓ ✓ ✓

GEF [18] ✓ ✓ ✓ Beam splitter Mark points matching DAVIS240 190×180 1520×1440 color 20 FPS ✓ ✓ % ✓

HS-ERGB [19] ✓ ✓ ✓ Dual camera setup External clock triggering Prophesee ∼ 900× 800 ∼ 900× 800 color 150-163 FPS ✓ ✓ ✓ ✓

BS-ERGB [23] ✓ ✓ ✓ Beam splitter External clock triggering Prophesee 970×625 970×625 color 28 FPS ✓ ✓ ✓ ✓

ERF-X170FPS [40] ✓ ✓ ✓ Beam splitter External clock triggering Prophesee 1440×975 1440×975 color 170 FPS % ✓ ✓ ✓

ERDS [41] ✓ ✓ ✓ Beam splitter External clock triggering Prophesee 1024×720 1024×720 color 75-108 FPS % ✓ ✓ ✓

EVENTAID-F ✓ ✓ ✓ Beam splitter External clock triggering Prophesee ∼ 954× 636 ∼ 954× 636 color 150 FPS ✓ ✓ ✓ ✓

Event-aided
image deblurring

Simulation

GoPro+ESIM [31] % % ✓ - - Simulation 1280× 720 1280× 720 color ∼34 FPS∗ ✓ ✓ ✓ ✓

Blur-DVS [42] % ✓ ✓ Frame+event sensor Chip synchronization DAVIS240 240×180 240×180 gray <9 FPS∗ % ✓ % ✓

RBE [31] % ✓ ✓ Frame+event sensor Chip synchronization DAVIS240 240×180 240×180 gray 7 FPS % ✓ ✓ %

Kim et al. [27] % ✓ ✓ Frame+event sensor Chip synchronization DAVIS346 color 346×260 346×260 color ∼17 FPS ✓ % % %

Real

REBlur [43] ✓ ✓ ✓ Repetitive motion scenes Mark points matching DAVIS346 mono 320×260 320×260 gray - % % ✓ %

REVD [44] ✓ ✓ ✓ Beam splitter External clock triggering Prophesee 1024×768 1024×768 color - % ✓ ✓ ✓

EVRB [45] ✓ ✓ ✓ Beam splitter External clock triggering Prophesee 960×640 960×640 color - % ✓ ✓ ✓

EVENTAID-B ✓ ✓ ✓ Beam splitter External clock triggering Prophesee ∼ 835× 620 ∼ 835× 620 color 30 FPS ✓ ✓ ✓ ✓

Event-aided
image

super resolution

Simulation

ESC [46] % % ✓ - - Simulation 128× 128 512× 512 gray - ✓ ✓ ✓ ✓

GoPro+V2E [47] % % ✓ - - Simulation 320× 180 1280× 720 color - ✓ ✓ ✓ ✓

GoPro+ESIM [38] % % ✓ - - Simulation 320× 180 1280× 720 gray - ✓ ✓ ✓ ✓

Real EVENTAID-S % ✓ ✓ Beam splitter External clock triggering Prophesee 1270× 710 2540×1420 color 30 FPS ✓ ✓ ✓ ✓

Event-aided
high dynamic range
image reconstruction

Simulation Yang et al. [28] % % ✓ - - Simulation 256×256 256×256 color - ✓ % % ✓

Real

Han et al. [24] ✓ ✓ % Beam splitter Mark points matching DAVIS240 240×180 1520×1440 color 20 FPS ✓ ✓ % %

HES-HDR [48] ✓ ✓ % Beam splitter Mark points matching DAVIS346 mono 329×237 2032×1446 color 20 FPS ✓ ✓ % ✓

Yang et al. [28] ✓ ✓ % Beam splitter Mark points matching DAVIS346 color 346×260 346×260 color ∼10 FPS % % % ✓

EVENTAID-D ✓ ✓ Reference Beam splitter External clock triggering Prophesee ∼ 800× 500 ∼ 800× 500 color 20-30 FPS ✓ ✓ ✓ ✓

propose a real-captured dataset to benchmark image/video
deblurring task. In contrast, due to the lack of comprehen-
sive real-captured datasets and quantitative benchmarks,
the performance of event-aided image/video enhancement
methods on real-captured data is still largely unexplored. In
Table 1, we summarize the widely used evaluation datasets
for five event-aided image/video enhancement tasks and
compare their characteristics1. EVENTAID is also added to
this comparison to highlight its advantage.

We focus on the following properties to evaluate the
characteristics of these datasets: (1) Whether the triplet
(input frames, input events, and ground truth) are real-
captured data: Compared to using simulated data as evalu-
ation datasets, real-captured data enables benchmarking the
enhancement performance of the algorithm in real-world
scenarios. However, since it is extremely challenging to
collect real-captured data simultaneously, existing datasets
often complete the triplet data by simulating events or
synthesizing blur images, LDR images, etc., which will
introduce a real-sim gap and make the benchmark results

1. Tables on page 3 of the supplementary material analyzes EVEN-
TAID-F/-B/-D in terms of data diversity compared to existing datasets.

less convincing. (2) Spatiotemporal synchronization man-
ner of event sensor and frame-based sensor2: To capture
real data, there are four spatial matching patterns, where
“frame+event sensor” is the best solution for synchroniza-
tion but lacks the flexibility of switching cameras, “dual
camera setup” can easily replace different frame cameras
but disparity prevents pixels from being accurately aligned,
“repetitive motion scenes” is difficult to collect diverse
scenes. In contrast, “beam splitter” can effectively avoid the
above problems. There are three temporal synchronization
patterns, where “chip synchronization” is the best choice,
and “external clock triggering” can also achieve microsec-
ond level synchronization error. (3) Performance parameters
of event sensor and frame-based sensor: Higher resolution
and frame rates help to collect high-quality data. (4) The
diversity of the captured scenes: Datasets covering diverse
scenarios help evaluate the robustness of algorithms.

Event-based video reconstruction. For this task, evaluation
data should contain input events and ground truth frames.
EventNFS [32] develops a display-camera system to observe

2. The illustrations of different spatiotemporal synchronization ways
are shown in Sec. 0 of the supplementary material.
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real-scenario event data via playback of 240FPS 720p
videos on the display, while the real-sim gap of events still
exists due to the relatively low refresh rate and dynamic
range display. IJRR [33], HQF [34], DVS-Dark [35], MVSEC
[36] and CED [37] all capture event data with the DAVIS
series cameras [2], [30] and use APS as the ground truth
frames. However, these cameras have low resolution and
frame rate, and APS suffers from severe noise. In con-
trast, EVENTAID-R collects real-captured data at an average
954× 636 resolution and 150FPS, enabling the benchmark
results to meet the requirements of real-world application
scenarios.

Event-aided HFR video reconstruction. For this task, eval-
uation data should contain the triplet: input events, input
LFR frame sequence, and ground truth HFR frames. The
simulated datasets [38], [62] take in HFR video datasets as
ground truth and pass them into simulators to generate
event signals. SloMo-DVS [39] and GEF [18], [26], while
real-captured, also suffer from low resolution and low frame
rates. HS-ERGB [19] first collects HFR and HR videos as the
ground truth, while the baseline existing in the dual camera
system introduces inevitable errors. BS-ERGB [23] selects
an LFR frame-based camera and the two cameras mount
different lenses. ERF-X170FPS [40] and ERDS [41] lack the
data on indoor scenes. The proposed EVENTAID-F avoids
the above shortcomings and provides ground truth videos
of 150FPS for the algorithms to be evaluated.

Event-aided image deblurring. This task requires evalu-
ation data containing the triplet: input events, input blur
images, and ground truth blur-free images. Different from
the above two tasks, simultaneous capturing of blur and
blur-free images greatly increases the difficulty of data col-
lection. Therefore, most datasets simulate blurry images by
averaging multi-frames [27], [31], [38], [42]. To achieve real-
captured data collection, REBlur [43] performs controlled
experiments indoors to collect the triplet data by repeating
the same motion scenario multiple times, which can only
capture indoor scenes with nondiversity. REVD [44] lacks
the data on indoor scenes. To collect diversity and real-
world datasets, the proposed EVENTAID-B first captures
all real-captured triplet data by synchronizing two frame
cameras and an event camera via beam splitters.

Event-aided image super-resolution. This task requires
evaluation data containing input events, input LR images,
and ground truth HR images. Since this task is still in its
initial exploration stage, the existing evaluation datasets are
all simulated. The proposed EVENTAID-S dataset is the first
real-captured evaluation dataset, which captures 2× HR
frames as the ground truth and 1× events as the LR inputs.
The input 1× LR frames are downsampled from HR ones
following the process in single image SR tasks.

Event-aided HDR image reconstruction. For this task, eval-
uation data contains input events, input LDR images, and
ground truth HDR images. Existing datasets, i.e., Han et al.
[24], HES-HDR [48], and Yang et al. [28] only contain input
events and LDR images. They mainly evaluate the quality of
the reconstructed HDR images through no-reference qual-
ity assessment. EVENTAID-D uses an alternating-exposure
camera to cyclically get short-/middle-/long-exposure LDR

images as the diverse input data, and mix multi-exposure
images to restore HDR images as the reference.

3 EVENTAID DATASET COLLECTING

This section introduces the collection process of EVENTAID.
Figure 2 shows the equipment setup we used.

3.1 Sensor and optics configuration
To collect datasets with high imaging quality, spatiotempo-
ral synchronization, and unified scale, we use one Proph-
esee EVK4 HD (1280 × 720) event camera to capture
event signals, two Hikvision MV-CA050-12UC RGB cameras
(2448 × 2048, 60FPS) to simultaneously capture short-
/low-exposure and long-/high-exposure frames for de-
blur/HDR task, one Hikvision MV-CA050-12UC RGB cam-
eras (2448×2048, 60FPS) to capture HR images, one Hikvi-
sion MV-CA016-10UC RGB camera (1440× 1080, 165FPS)
to capture HFR frames, and one Basler acA800-510uc RGB
camera (800×600, 510FPS) to capture alternating-exposure
frame for HDR reconstruction task. We mount the same
lenses (16mm or 50mm, F = 1 : 2.8, C-mount, fixed focus)
for each task to avoid the influence of focal length and
distortion differences. During the capturing process, we bal-
ance image quality and depth of field to determine aperture
parameters and keep them consistent across all lenses. For
scenes with multiple objects at different depths, we adjust
focus rings to ensure the objects at the image center are in
focus. We use Thorlabs CCM1-BS013 beam splitters (50 : 50
Split Ratio) to share light input for multiple cameras. In
addition, when collecting EVENTAID-B, we set 25%, 10%, or
2% transmission ND filters to ensure luminosity consistency
for short-exposure and long-exposure cameras.

Since event-aided image deblurring has been widely
studied, and the algorithm performance is related to the
degree of blur caused by motion, we execute a controllable
experiment to evaluate the limits of blur levels that existing
methods can withstand. Figure 3 shows the equipment
setup and the experiment site layout of the controlled exper-
iment. We use a servo steering gear to control a rigid rod to
swing periodically at an opening angle of 120◦, and fix a flat
plate with a high-definition photo 1m away from the center
of rotation as the main shooting target. The equipment setup
is placed about 1m in front of the photo. Thus, when the
exposure time of the cameras is fixed, we can adjust the
motion speed of the photo by adjusting the swing period
of the steering gear to obtain frames with different blur
degrees. We set the exposure time of the short exposure
camera to 2ms and the long exposure camera to 8ms. The
swing period is sequentially sampled at intervals of 0.25s
from 1.5s to 4s. We set up a DC fill light behind the scenes
to ensure clear frames are less affected by noise imaging.

3.2 Geometric and photometric alignment
We use two types of camera hybrid system setups to col-
lect data, as shown in Fig. 2 (a) and (b). The first setup
used to collect the EVENTAID-B and EVENTAID-D datasets
contains three cameras and we use three 50 : 50 split ratio
beam splitters docked and mounted in front of the lenses
to ensure the input light is evenly split across all three
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(b) The setup of EventAid-R/-F/-S/-D dataset collection

Beam 
splitter

Event 
camera

RGB camera #3/4/5

EventAid-R/-F:
High frame rate
Hikvision, MV-CA016-10UC,
1440×1080, 165 FPS

EventAid-S:
High resolution
Hikvision, MV-CA050-12UC,
2448×2048, 60 FPS

EventAid-D:
Alternating-exposure
Basler, acA800-510uc,
800×600, 510 FPS

Light input

(a) The setup of EventAid-B/-D dataset collection

Light input
Beam splitters

50:50 Split Ratio

Event camera
Prophesee EVK4 HD, 

1280×720

RGB camera #2
Long exposure

Hikvision,
MV-CA050-12UC,

2448×2048, 60 FPS

RGB camera #1
Short exposure

Hikvision,
MV-CA050-12UC,

2448×2048, 60 FPS

ND filter
25%, 10%, 2% 
transmission time

Square-wave signal

Signal generator

Event camera

RGB camera

RGB camera

(c) Temporal 
synchronization

Camera lens
16mm, 50mm, 
fixed-focus lens

Figure 2: The equipment setup we used to collect the proposed dataset. (a) For the EVENTAID-B, we use one RGB camera
to capture long-exposure blur images as the input, and another RGB camera to capture short-exposure clear images as
the ground truth, the corresponding events are captured by one event camera. This setup can also collect EVENTAID-D
where two different exposure images can be merged into one HDR image. (b) For the EVENTAID-R/-F/-S/-D dataset, we
collocate an event camera and an RGB camera by mounting a 50 : 50 split ratio beam splitter in front of them. For each
task, an RGB camera with corresponding attributes is selected to ensure that effective ground truths are captured. (c) We
use a signal generator to simultaneously send square-wave signals to all cameras to achieve synchronized shooting.

Photo plate

RGB camera #2
Long exposure

RGB camera #1
Short exposure Event cameraLight input

Periodic swing

Figure 3: The equipment setup we used for the controlled
experiment of event-aided image deblurring task.

cameras, i.e., each camera receives an equal 25% of the
input light. The three beam splitters are tightly connected
through two SM1 external thread couplers, each lens is
tightly connected with a beam splitter through a M27-to-
SM1 thread adapter. The second setup used to collect the
EVENTAID-R/-F/-S/-D contains two cameras and we use
a 50 : 50 split ratio beam splitter to connect them. All
cameras are fixed to a breadboard via poles to ensure they
remain stable during severe shaking. Although the above-
mentioned tight connection can make the fields of view
of the three cameras well overlapped, it is still difficult to
avoid pixel-level misalignment. Similar to Wang et al. [26],
we use a 13.9” monitor for an offline geometric register for
three cameras. We calculate the homography among three
views. Then we use the homography matrix to transfer
the views of two RGB cameras to the view of the event
camera to ensure that the three views are aligned. Before
dataset collection, we synchronize RGB cameras’ exposure
and capture video and event data simultaneously in optimal
lighting. We iteratively refine the camera setup to minimize
misalignment. For RGB-event matching, we compare resid-
uals from adjacent RGB frames with corresponding event
frames and minimize their misalignment.

The first setup should ensure the photometric alignment
for two RGB cameras. For color consistency, we turn off the
auto white balance and calibrate two cameras with a Col-
orChecker, adjust the same parameters of R/G/B channels
in the camera SDK, and also use image editing software
to fine-tune and ensure color consistency. For brightness
consistency, exposure time ratios are set to 100 : N between
the N%-transmission-ND-filtered and unfiltered cameras to
equalize light intake. Before data capture, we use a grayscale
board to calibrate the brightness of the two cameras to make
them consistent.

In contrast to the relay-lens-based geometric alignment
strategy [83], our setup achieves a similar FOV while avoid-
ing the significant aberrations introduced by relay lenses.
The DSLR-lens-based strategy [84] positions a DSLR lens
in front of beam splitters to enable multiple cameras to
share one lens. In comparison, our setup makes it easy to
switch cameras or filters. We use a DSLR-lens-based setup to
capture 4 groups in EVENTAID-R. The results show similar
geometric alignment accuracy between the two strategies.

When collecting EVENTAID-D, we adopt the Zou et al.
[85] method and use the first setup to capture EVENTAID-
D-Dynamic sub-dataset with HDR video reference. Where
two RGB cameras take overexposed and underexposed LDR
images to merge HDR reference. We also use Han et al. [48]
method to collect EVENTAID-D-Static sub-dataset with high-
quality static reference with an alternate exposure camera.

3.3 Temporal synchronization
We use an Arduino Uno Rev3 microcontroller board as the
signal generator to simultaneously send 5-volt square-wave
signals to all cameras for achieving synchronized capturing.
The corresponding interface of the signal generator and the
GPIO ports of the cameras are connected through cables.
The RGB camera takes a frame on each rising edge of
the square-wave signal. The Prophesee event camera starts
to trigger events when it receives the first rising edge
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Figure 4: Overview of the real-world scenes on the proposed datasets. The frequency of associations between 8 types of
scene attributes is visualized in the chord diagram. Each attribute is subdivided into detailed categories, and one sample
scene of each category is showcased on the left or right sides. The colored bands below the sample scenes serve to indicate
the positions of categories under the same attribute.

and marks each rising edge and falling edge with special
marking events. By shooting a high-precision LED timer, we
confirm that the time error is within 10ms. For EVENTAID-
B, the trigger times of short exposure images are set at the
center of the exposure time of long exposure images.

3.4 Scene diversity and dataset size

We consider the scenario diversity of all sub-datasets. As
shown in Fig. 4, all sub-datasets include indoor and out-
door, global and local motion, slow and fast motion, and
various texture scenes3. To analyze the performance for
challenging scenes, we collect fast, non-linear motion, and
smooth texture scenes in EVENTAID-R/-F/-B, complex
texture scenes in EVENTAID-S, and wide dynamic range
scenes in EVENTAID-D. We collect a large amount of test
data for each sub-dataset, with EVENTAID-F containing 10
groups totaling 44,496 frames, EVENTAID-R containing 14
groups4 totaling 45,270 frames, EVENTAID-B containing 14
groups totaling 4,088 frames, EVENTAID-S containing 10
groups totaling 10,986 frames, and EVENTAID-D containing
13 groups totaling 5,173 frames.

We also collect two simulated datasets, i.e., EVENTAID-
V2E/-VM, to evaluate and compare the real-sim gap of
two widely used event simulators, i.e., V2E [86] and DVS-
Voltmeter [87] on event-based video reconstruction, event-
aided HFR video reconstruction, image deblurring, and im-
age SR reconstruction tasks. To simulate the corresponding
events, the ground truth videos of EVENTAID-R/-F/-B/-
S are input into two simulators to generate event data. All
parameters are set according to the author’s suggestions.

3. More scenes, as well as completed scene numbers and names are
recorded in the supplementary material.

4. 10 groups are shared with EVENTAID-F and 4 groups are collected
by a SilkyEvCam BothView camera.

4 EXPERIMENTS AND BENCHMARK ANALYSIS

4.1 Methods and evaluation metrics

We use the sub-datasets of EVENTAID to evaluate represen-
tative methods of five event-aided image/video enhance-
ment tasks respectively. (1) For event-based video recon-
struction task, we choose E2VID (CVPR19 [20], TPAMI20
[5]), FireNet (WACV20 [63]), ET-Net (ICCV21 [64]), SPADE-
E2VID (TIP21 [51] ), SSL-E2VID (ICCV21 [65]), and
EVSNN (CVPR22 [66]). (2) For the event-aided HFR video
reconstruction task, we choose TimeLens (CVPR21 [19]),
E-VFIA (ICRA23 [67]), and CBMNet (CVPR23 [40]). (3)
For the event-aided image deblurring task, we choose
EDI (CVPR19 [22], TPAMI20 [71]), RED-Net (ICCV21 [72]),
D2Net (ICCV21 [73]), EVDI (CVPR22 [74]), EFNet (ECCV22
[75]), NEST (ECCV22 [76] and REFID (CVPR23 [55])). (4) For
the event-aided image SR reconstruction task, we choose
E2SRI (CVPR20 [21], TPAMI22 [46]) and EvIntSR (ICCV21
[47]). (5) For the event-aided HDR image reconstruction
task, we choose HDRev (CVPR23 [28]) and NeuImg-HDR
(CVPR20 [24], TPAMI23 [48]). For algorithms with both
conference and journal papers, we chose their latest version
for evaluation. We use the original code and pre-trained
model of each method released from their project websites.

For each of the four event-aided image/video enhance-
ment tasks (i.e., event-aided HFR reconstruction, image de-
blurring, image SR, and HDR restoration), we also bench-
mark three state-of-the-art single-image-based methods. (1)
For HFR video reconstruction, we choose FLAVR (WACV23
[68]), RIFE (ECCV22 [69]), and VFIFormer (CVPR22 [70]).
(2) For image deblurring, we choose FFTFormer (CVPR23
[77]), NAFNet (ECCV22 [78]), and Restormer (CVPR22
[79]). (3) For image SR, we choose ATD (CVPR24 [80]),
CAMixer (CVPR24 [82]), and BFSR (CVPR24 [81]). (4) For
HDR restoration, we choose CEVR (WACV23 [88]), KUNet
(IJCAI22 [89]), and SingleHDR (CVPR20 [90]).
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Table 2: The benchmark results for four tasks on real-captured EVENTAID and simulated EVENTAID-V2E/-VM dataset.
The top three values for each group are highlighted in color block, with redder shades indicating higher rankings.

Event-based video reconstruction

Methods
EventAid-R EventAid-R-V2E EventAid-R-VM

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Event-based
methods

E2VID [5], [20] 6.912 0.398 0.582 6.295 0.390 0.624 10.464 0.532 0.500
FireNet [63] 8.461 0.405 0.571 8.890 0.397 0.617 10.536 0.501 0.528
ET-Net [64] 13.757 0.483 0.548 14.225 0.560 0.566 13.139 0.473 0.536
SPADE-E2VID [51] 9.570 0.393 0.592 9.018 0.371 0.630 10.118 0.425 0.567
SSL-E2VID [65] 9.282 0.409 0.601 10.537 0.448 0.614 9.340 0.433 0.576
EVSNN [66] 9.660 0.396 0.606 9.441 0.370 0.657 9.184 0.420 0.582

Event-aided HFR video reconstruction

Methods
EventAid-F EventAid-F-V2E EventAid-F-VM

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Event-based
methods

TimeLens [19] 31.634 0.916 0.122 28.169 0.861 0.159 28.547 0.871 0.154
E-VFIA [67] 29.282 0.872 0.204 27.227 0.833 0.234 27.490 0.839 0.228
CBMNet [40] 32.436 0.926 0.132 29.951 0.895 0.153 30.212 0.899 0.151

Image-based
methods

FLAVR [68] 31.500 0.903 0.179 / / / / / /
RIFE [69] 32.198 0.906 0.117 / / / / / /
VFIFormer [70] 31.366 0.908 0.152 / / / / / /

Event-aided image deblurring

Methods
EventAid-B EventAid-B-V2E EventAid-B-VM

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Event-based
methods

EDI [71] 27.243 0.824 0.308 25.987 0.826 0.298 25.285 0.796 0.336
RED-Net [72] 23.134 0.847 0.263 24.316 0.808 0.318 23.129 0.789 0.327
D2Net [73] 26.205 0.862 0.299 25.912 0.855 0.306 25.822 0.853 0.308
EVDI [74] 27.528 0.865 0.261 25.329 0.829 0.306 23.834 0.801 0.317
EFNet [75] 28.522 0.884 0.262 25.852 0.843 0.318 25.191 0.830 0.324
NEST [76] 28.628 0.887 0.224 24.675 0.828 0.310 25.239 0.812 0.305
REFID [55] 28.504 0.894 0.235 25.189 0.838 0.309 24.266 0.823 0.313

Image-based
methods

FFTFormer [77] 23.691 0.831 0.324 / / / / / /
NAFNet [78] 26.291 0.860 0.316 / / / / / /
Restormer [79] 26.716 0.855 0.260 / / / / / /

Event-aided image super-resolution

Methods
EventAid-S EventAid-S-V2E EventAid-S-VM

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Event-based
methods

E2SRI [46] 8.813 0.497 0.606 8.912 0.504 0.611 10.052 0.539 0.577
EvIntSR [47] 18.292 0.777 0.303 18.287 0.780 0.307 18.064 0.764 0.308

Image-based
methods

ATD [80] 45.180 0.982 0.115 / / / / / /
BFSR [81] 46.047 0.986 0.095 / / / / / /
CAMixer [82] 45.255 0.984 0.111 / / / / / /

The output results can be evaluated with the full refer-
ence evaluation metrics except for EVENTAID-D. We adopt
PSNR to approximate estimate the human perception of
reconstruction quality, and SSIM to evaluate the similarity
of two images from the luminance, contrast, and structure
components. We further use LPIPS [91], which better models
the humane judgment by extracting the features from the
pre-trained classification network, to evaluate the percep-
tual similarity between results and the ground truth.

4.2 Benchmarking for event-aided methods
We show the quantitative results on both real and simulated
data for 4 tasks in Table 2. Representative qualitative results
are presented in Fig. 5, Fig. 6, Fig. 7, and Fig. 8. 5

5. In the supplementary material, Sec. 1 to Sec. 5 of the document file
respectively shows more comparison results for five tasks on the real-
captured EVENTAID dataset and the simulated EVENTAID-V2E/-VM
datasets, Sec. 6 shows the distribution of quantitative results across all
frames by boxplots, and the video results from different comparison
methods are provided in the video file.

4.2.1 Event-based video reconstruction
We feed the input events of EVENTAID-R into the methods
to be benchmarked and each of them reconstructs a video
with a frame rate of 150FPS with timestamps matching
the ground truth video. The quantitative comparison result
in Table 2 shows that ET-Net [64] achieves more promising
performance than other methods, the quantitative result
distribution6 also shows that ET-Net [64] performs opti-
mally in most groups. Nevertheless, the qualitative results
of E2VID [5], [20] and FireNet [63] in Fig. 5 seem more
natural, retaining more detail, while other methods tend to
reconstruct images with sharper edges and high contrast. It
is consistent with the results in their original papers.

Inspiration: There are two main goals in the current re-
search for event-based video reconstruction, one is to faith-
fully restore details and contrasts of natural images (e.g.,
E2VID [5] and FireNet [63]), and the other one is to enhance

6. The quantitative result distribution is shown in Fig. S6-1 of the
supplementary material.
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Event frame E2VID FireNet SPADE-E2VID SSL-E2VID EVSNN Ground truthET-Net

Figure 5: Event-based video reconstruction result examples from the EVENTAID-R dataset. We show the results output
from E2VID [5], [20], FireNet [63], ET-Net [64], SPADE-E2VID [51], SSL-E2VID [65], and EVSNN [66]. In each square of
the ground truth column, lower-left shows the RGB images, and upper-right shows the corresponding gray channel to
facilitate comparison with the grayscale images produced from evaluated methods.

Event frame E-VFIA TimeLens Ground truthCBMNet

Figure 6: Event-aided HFR video reconstruction result ex-
amples from the EVENTAID-F. We show the results pro-
duced from E-VFIA [67], CBMNet [40], and TimeLens [19].

the contrast and sharpness as well as suppress noises of
images (e.g., ET-Net [64] and SSL-E2VID [65]) to highlight
the main objects of the scene. Current metrics for evaluating
reconstruction quality such as PSNR only focus on global
pixel value similarity, and ignore evaluating the image
contrast enhancement and noise suppression quality. To
comprehensively evaluate the reconstruction performance
of different methods, developing new metrics for balancing
detail recovery and noise suppression in event-based video
reconstruction is necessary for future research. In addition,
current research focuses on video reconstruction of event
data from DAVIS240 [30] or DAVIS346 [2], and event cam-
eras with higher resolution (e.g., Prophesee EVK4 HD) also
become popular. The comparison show that some methods
perform much better on the DAVIS-captured event data in
the original papers (e.g., Fig. 6 in EVSNN [66]) than on the
Prophesee-captured event data (i.e., EVENTAID-R). How to
reconstruct high-quality video given event data with more
pixels or introduce image pre-training models to improve
the reconstruction performance is worth further exploration.

4.2.2 Event-aided HFR video reconstruction
We extract frames from the HFR ground truth videos in
EVENTAID-F by a factor of 1/8 as the LFR input videos,
then feed the input events and videos into the methods to be
benchmarked to reconstruct 8× HFR videos. Note that we
only consider inter-frame interpolation and not intra-frame

interpolation. We classify intra-frame interpolation into the
image deblurring task. We use the first 700 frames of each
group as the training dataset and finetune the pretrained
models. The retraining strategies follow the original papers
or acquired from the authors. The quantitative comparison
results in Table 2 and additional results7 show the best frame
interpolation performance of CBMNet [40]. Qualitative re-
sults show that TimeLens [19] and CBMNet [40] perform
significantly better in challenging scenarios such as high-
speed motion. Besides, CBMNet [40] tends to reconstruct
better performance for intermediate frames.

Inspiration: Introducing events into this task mainly aims
to use the high-temporal precision motion information
recorded by events to restore the motion trajectory of ob-
jects, and events are mostly desired when there are non-
linear and complex motions in the scene. However, existing
algorithms do not always extract the motion information
precisely, resulting in distorted edges and inaccurate color
recovery in the interpolated frames. Besides, event degra-
dations such as noise, tailing, and signal loss also affect
the accuracy of motion extraction and the quality of image
detail recovery. Some algorithms also exhibit significant
performance variations in reconstructing skipped frames at
different positions. How to model and represent non-linear
motion while eliminating the interference caused by event
degradations is the main bottleneck encountered in this task.
With future progress in the accurate motion extraction of
event data, the effect of HFR reconstruction is expected to
be further improved.

4.2.3 Event-aided image deblurring
We feed the input blur image sequence and corresponding
events within its exposure period into deblurring methods
to restore clear images at the input image’s exposure period.
Since RED-Net [72] can only process grayscale images, we
evaluate the output results with ground truth in grayscale
space. we randomly select half of the frames as the training
dataset and finetune the pretrained model of each method

7. More results and results of image-based methods are shown in Sec.
2.1 and Sec. 6.4 of the supplementary material.
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Event frameBlurry image EDI REFIDRED-Net D2Net EVDI EFNet NEST Ground truth

Figure 7: Event-aided image deblurring result examples from the EVENTAID-B dataset. We show the results produced from
EDI [22], RED-Net [72], D2Net [73], EVDI [74], EFNet [75], NEST [76], and REFID [55].

accordingly. The retraining strategies are implemented fol-
lowing the descriptions in the original papers or acquired
from the authors. The PSNR and SSIM comparison results8

in Table 2 show that the performance of EFNet [75], NEST
[76] and REFID [55] are all competitive, which benefit from
their well-designed network model. The qualitative com-
parisons in Fig. 7 show that EDI [71], EFNet [75] and REFID
[55] can reconstruct clear images. However, the quantitative
results for some methods are relatively low, which may
be due to a mismatch between the training data and real-
captured data distribution, leading to lower pixel values in
outputs and subsequently lowering the test metrics.

controlled experiment: We further experiment with event-
aided image deblurring to evaluate the limits of blur levels
that existing methods can withstand. Table 3 records the
quantitative results from the pretrained models. We perform
gamma correction on the results of RED-Net [72] and NEST
[76] to alleviate the brightness issues and mark the refined
results with “∗”. The average PSNR values of D2Net [73],
EVDI [74], EFNet [75], REFID [55] and refined RED-Net [72]
are comparable and better than other methods including
image-based ones, while EFNet [75] and REFID [55] are
significantly superior to other methods in LPIPS.

The changing trend of the colored blocks in Table 3
reveals the algorithm’s tolerance and compatibility with
different degrees of blur9. It is interesting that the PSNR
values of most algorithms decrease as the degree of blur
diminishes. This counterintuitive result may be due to a
smoothing effect of the PSNR metric, where the algorithm
smooths the reconstruction of blurred edges in images with
higher blur, leading to a higher PSNR value. In contrast,
the trend in LPIPS more reasonably reflects the performance
improvement of the algorithms as the blur decreases.

Inspiration: From the comparison, we can find that two is-
sues prevent existing methods from being further improved:
The modal differences between events and images and the
difficulty in calibrating event trigger thresholds lead to ad-
ditional artifacts introduced by event signals. Designing an
event representation model that is more effective for image
fusion, and proposing a robust online threshold estimation
method might help in conquering these bottlenecks. Besides,

8. More results are shown in Sec. 3 of the supplementary material.
9. Visual results are shown in Fig. S3-71 to Fig. S3-74.

Table 3: The image deblurring quantitative results on the
dataset collected from the controlled experiment (Fig. 3).
We calculate PSNR and SSIM for 7 methods that perform
the deblurring process on input images with 11 blur levels.
The blur levels correspond to the swing periods, a shorter
period indicates a higher degree of blur. “Ave.” indicates the
average values, redder blocks represent better performance
with a higher PSNR value or lower LPIPS value. The values
in yellow/green blocks represent the differences from aver-
age values, greener blocks represent better performance.

PSNR

Methods Ave. 1.50s 1.75s 2.00s 2.25s 2.50s 2.75s 3.00s 3.25s 3.50s 3.75s

EDI [71] 32.80 +0.08 +0.16 +0.32 -0.07 +0.07 +0.11 +0.00 -0.18 -0.11 -0.22

RED-Net [72] 14.17 -0.02 +0.05 +0.28 -0.24 -0.23 -0.07 +0.05 +0.19 -0.03 -0.04

RED-Net* 33.15 -0.51 -0.22 -0.07 -0.17 -0.04 +0.25 +0.40 +0.09 +0.10 -0.05

D2Net [73] 33.21 +0.74 +0.41 +0.36 +0.05 +0.04 +0.05 -0.16 -0.37 -0.42 -0.51

EVDI [74] 33.26 +0.09 +0.19 +0.36 +0.01 +0.18 +0.25 -0.05 -0.22 -0.23 -0.35

EFNet [75] 33.22 +0.62 +0.52 +0.60 +0.07 +0.06 +0.08 -0.22 -0.40 -0.39 -0.51

NEST [76] 20.10 -0.01 +0.02 +0.03 -0.05 +0.03 -0.04 -0.01 -0.01 +0.03 +0.02

NEST* 27.46 -0.09 +0.04 -0.34 +0.10 +0.45 -0.06 -0.01 +0.05 -0.13 -0.12

REFID [55] 33.52 +0.82 +0.60 +0.57 +0.16 +0.13 +0.11 -0.31 -0.46 -0.51 -0.62

FFTFormer [77] 32.55 +0.08 +0.02 +0.15 -0.07 +0.18 +0.11 -0.02 -0.14 -0.06 -0.20

NAFNet [78] 32.12 +0.48 +0.39 +0.29 +0.16 +0.20 +0.05 -0.14 -0.32 -0.31 -0.47

Restormer [79] 32.85 +0.49 +0.40 +0.40 +0.01 +0.03 +0.05 -0.16 -0.29 -0.28 -0.37

LPIPS

Methods Ave. 1.50s 1.75s 2.00s 2.25s 2.50s 2.75s 3.00s 3.25s 3.50s 3.75s

EDI [71] 0.293 0.010 0.010 0.008 0.014 0.013 0.012 -0.009 -0.007 -0.014 -0.015

RED-Net [72] 0.327 0.013 0.018 0.013 0.015 0.004 0.000 -0.012 -0.012 -0.009 -0.007

RED-Net* 0.246 -0.005 0.007 0.005 0.012 0.004 -0.002 -0.005 0.001 -0.001 0.000

D2Net [73] 0.230 -0.017 -0.002 -0.001 0.004 0.003 -0.003 0.001 0.008 0.008 0.006

EVDI [74] 0.231 0.015 0.014 0.005 0.010 0.000 -0.006 -0.008 -0.006 -0.005 -0.004

EFNet [75] 0.207 -0.018 -0.005 -0.008 0.003 0.004 0.001 0.004 0.009 0.008 0.006

NEST [76] 0.437 0.008 0.002 0.005 0.002 -0.005 -0.005 -0.006 0.001 0.002 0.004

NEST* 0.451 0.010 0.004 0.004 0.002 -0.004 -0.007 -0.006 0.001 0.000 0.003

REFID [55] 0.206 -0.019 -0.007 -0.006 0.000 -0.001 -0.001 0.004 0.008 0.013 0.011

FFTFormer [77] 0.229 -0.001 0.009 0.004 0.011 0.001 -0.004 -0.002 0.001 -0.001 -0.003

NAFNet [78] 0.240 -0.020 -0.010 -0.005 0.003 -0.003 -0.003 0.006 0.009 0.013 0.011

Restormer [79] 0.216 -0.009 0.000 -0.003 0.006 0.001 -0.003 0.003 0.004 0.005 0.003

similar to the HFR reconstruction task, the difficulty of
extracting the non-linear motion accurately makes it hard
to restore sharp textures correctly. So precise motion ex-
tractions are also desired here. In addition, event cameras
perceive in grayscale space, so it is difficult to assist in
recovering the color information of blurry areas. Introduc-
ing color event cameras or image colorization models is
a possible way of improvement. Finally, due to the large
spatial resolution gap between event cameras and frame
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Ground truthLR image EvIntSRE2SRIEvent frame

Figure 8: Event-aided image super-resolution result exam-
ples from the EVENTAID-S dataset. We show the results
produced from E2SRI [21], [46], and EvIntSR [47]. Green
boxes show the closed-up views.

cameras, how to use LR event signals to deblur HR images
with much higher resolution (like 20 times larger) is of
practical value for enhancing the photography experience
in future camera phones. The performance advantages over
image-based methods in dealing with severe blur validate
the necessity of introducing event cameras.

4.2.4 Event-aided image super-resolution

We generate input 1× LR images by downsampling HR
images of EVENTAID-S at a factor of 1/2 following the
process in single image SR tasks, then feed the 1× LR image
sequences and events into selected methods to reconstruct
2× SR frames. Note that E2SRI [5], [21] executes the SR
process directly from pure event data, so we only feed
1× LR events into it. We evaluate the output results with
ground truth in grayscale space since E2SRI [5], [21] and
EvIntSR [47] can only process grayscale images. EventZoom
[32] and ESR [92] are not compared here because these
algorithms output high-resolution event signals rather than
directly output high-resolution images. The quantitative
and qualitative comparison results10 in Table 2 and Fig. 8
show the best frame SR performance of EvIntSR [47]. How-
ever, the comparison can not validate that the performance
of EvIntSR [47] is better than the other method because the
input of the two methods is inconsistent. For E2SRI [21] with
only input events, the spatial resolution cannot be amplified
by events when the scene is static.

Inspiration: The core principle of this task is to use the high
temporal motion information recorded by events to con-
vert sub-pixel displacements in the spatial domain, thereby
achieving spatial upsampling. The results show that the
performance of the single-image methods is significantly
better than event-based methods because the two tested
event-based methods are trained on low-resolution data,
while the higher resolution of EVENTAID-S challenges the
generalization of them. In addition, 2× SR is easy for single-
image methods, while event noise affects the performance
of event-based methods. Besides, pure image-based SR has
been studied for decades, and some learning-based methods
can even achieve 16× upsampling (e.g., ABPN [93]), while
event-aided methods can only achieve lower-factor upsam-
pling. New explorations should make better use of events

10. More results are shown in Sec. 4.1 and Sec. 6.10 of the supplemen-
tary material.

to reconstruct SR images of higher quality than pure image-
based methods to further demonstrate the practical value
and research significance of this event-aided task.

4.2.5 Event-aided HDR image reconstruction
We feed the LDR images and corresponding events into
selected HDRev [28] and NeuImg-HDR [24], [48] to re-
store HDR images. For EVENTAID-D-Static, we obtain LDR
images captured through short-/middle-/long-exposure by
alternating exposure and use them as input to fully test the
robustness of methods. To obtain HDR reference, we first
hold the scene still while shooting the data and capture
11 multi-exposure frames to synthesize the reference image
by Debevec et al. [94]11. For EVENTAID-D-Dynamic, overex-
posed and underexposed LDR videos are merged to an HDR
video reference. It can be seen from the comparison that
both algorithms show a trend that the recovery performance
of the under-exposed area is better than that of the over-
exposed area, perhaps because the white background color
of the over-exposed area makes it easier to highlight the
reconstructed artifacts. The color of the image reconstructed
by HDRev [28] is more in line with human vision, while
the texture details restored by NeuImg-HDR [24], [48] are
clearer. The experiment also shows that the event-based
methods have obvious advantages over the single image
methods in the area where the image is over/under-exposed
but the events perceive the texture information effectively.

Inspiration: Event-aided HDR image reconstruction meth-
ods use the texture motion of over-/under-exposed areas
perceived by events to recover the lost information of these
areas and fuse them with LDR images. Accurately restoring
texture and color are two major attributes that the methods
of this task need to own. The challenge of reconstructing
realistic textures in over-/under-exposed areas is similar to
that of the event-based video reconstruction task. In addi-
tion, current methods for Event-aided HDR image restora-
tion [24] require shaking the event camera when capturing
data to make the event camera sufficiently perceive the
texture in the scene. Breaking through this limitation will
enable the algorithm to be more conveniently and broadly
used. Moreover, it is difficult for existing methods to cor-
rectly restore the color of over-/under-exposed areas be-
cause neither the event nor the image provides color priors.
Therefore, how to recover the color of HDR areas is also a
challenge that needs to be explored. Using color restoration
strategies in algorithms such as image colorization, image
inpainting, and semantic-based image restoration, or using
existing color recovery pre-trained models might be helpful
to solve the problem faced by this task.

4.3 Comparison with event simulators
Event simulators are useful for generating large-scale train-
ing datasets, but the real-sim gap makes it difficult for
trained models to work efficiently on real-captured data,
which has been verified by NeuroZoom [14]. We execute
the above benchmark processing again on the simulated
EVENTAID-V2E/-VM datasets to compare the construc-
tion results. The quantitative results on simulated data are

11. Results are shown in Sec. 5 of the supplementary material.
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Event frameLDR image HDRev NeuImg-HDR CEVR KUNet SingleHDR Reference

Figure 9: Event-aided HDR image reconstruction results from EVENTAID-D. We show results of event-based methods
HDRev [28] and NeuImg-HDR [24], [48], and single image-based methods CEVR [88], KUNet [89], and SingleHDR [90].
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Figure 10: Event-based video reconstruction result examples from real-captured EVENTAID-R, V2E [86] simulated dataset
EVENTAID-R-V2E, and DVS-Voltmeter [87] simulated dataset EVENTAID-R-VM.

recorded in Table 2. One qualitative result sample on event-
based video reconstruction task is presented in Fig. 1012.

The quantitative results show that the performance rank-
ing on simulated data is close to the ranking on the real-
captured dataset EVENTAID. This indirectly proves that
the spatiotemporal synchronization error of our EVENTAID
dataset is not significant, and the comparisons on real-
captured EVENTAID are convincing. The results in Table 2
show that the performances on V2E-simulated datasets are
lower than on real data, while some methods perform
against this trend, such as ET-Net [64] in the video recon-
struction task. This may be because the pre-trained models
of these methods are trained on V2E-simulated datasets.
In contrast, the performances on EVENTAID-VM datasets
are similar or even higher than the corresponding perfor-
mance on real data, especially the video reconstruction task.
Because the DVS-Voltmeter [87] more realistically models
the triggering process of event signals, the simulated event
distribution model matches the real data. In contrast, the
quality of V2E [86] depends on the frame rate of the input
video. When the frame rate is low, the generated events
are difficult to simulate the continuous distribution of real
events in the time domain. The comparison of qualitative
results also shows that EVENTAID-VM dataset results in
better visual effects. Note that in the event-based video
reconstruction, the image reconstructed on the EVENTAID-
VM has a greater contrast than the result on real-captured
EVENTAID, which may be related to the inaccurate setting
of the trigger threshold of the simulator. Whether the event
simulator can accurately simulate the trigger mechanism
of the real event sensor, correctly model the degradation
process such as noise, trailing, and signal loss, and solve the

12. More results are included in the supplementary material, Sec. 6
shows the quantitative result distribution across all frames by boxplots.

problem of discontinuous event distribution in time dimen-
sion when converting low frame rate video into events will
determine whether simulators can provide effective training
and evaluation data for the study of event algorithms.

5 CONCLUSIONS

We propose the first evaluation dataset for event-aided
image/video enhancement tasks with real-captured data
that allow quantitative and qualitative evaluations. All data
are real-captured by beam-splitter-mounted hybrid camera
systems. We benchmark 20 event-based methods and 12
image-based methods for both five tasks and analyze their
performances, and also benchmark 2 widely used event
simulators. Finally, we discuss the performance of existing
methods and propose several open problems for future
researchers.

Limitations: Some published methods have not been bench-
marked in this paper because the codes are unavailable or
they have just been published. we will release a benchmark
website that allows researchers to update their methods to
continuously facilitate research on event-aided image/video
enhancement tasks after the acceptance of this paper.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (Grant No. 62088102, 62402014,
62136001), Beijing Natural Science Foundation (Grant No.
L233024), Beijing Municipal Science & Technology Com-
mission, Administrative Commission of Zhongguancun Sci-
ence Park (Grant No. Z241100003524012). Peiqi Duan was
also supported by China National Postdoctoral Program
for Innovative Talents (Grant No. BX20230010) and China
Postdoctoral Science Foundation (Grant No. 2023M740076).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db 15
µs latency asynchronous temporal contrast vision sensor,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 2, 2008.

[2] G. Taverni, D. P. Moeys, C. Li, C. Cavaco, V. Motsnyi, D. S. S. Bello,
and T. Delbruck, “Front and back illuminated dynamic and active
pixel vision sensors comparison,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 65, no. 5, pp. 677–681, 2018.

[3] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and
B. Kay, “Opportunities for neuromorphic computing algorithms
and applications,” Nature Computational Science, vol. 2, no. 1,
pp. 10–19, 2022.

[4] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis,
and D. Scaramuzza, “Event-based vision: A survey,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1,
pp. 154–180, 2022.

[5] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed
and high dynamic range video with an event camera,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 6, pp. 1964–1980, 2021.

[6] R. Christian, G. Gottfried, and P. Thomas, “Real-time intensity-
image reconstruction for event cameras using manifold regulari-
sation,” in Proc. of British Machine Vision Conference (BMVC), 2016.

[7] C. Lee, A. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and K. Roy,
“Spike-FlowNet: Event-based optical flow estimation with energy-
efficient hybrid neural networks,” in Proc. of European Conference
on Computer Vision (ECCV), 2020.

[8] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Unsupervised
event-based learning of optical flow, depth, and egomotion,” in
Proc. of Computer Vision and Pattern Recognition (CVPR), pp. 989–
997, 2019.

[9] A. Baudron, Z. W. Wang, O. Cossairt, and A. K. Katsaggelos, “E3d:
Event-based 3d shape reconstruction,” arXiv, vol. abs/2012.05214,
2020.

[10] X. Wang, J. Li, L. Zhu, Z. Zhang, Z. Chen, X. Li, Y. Wang, Y. Tian,
and F. Wu, “VisEvent: Reliable object tracking via collaboration of
frame and event flows,” ArXiv, vol. abs/2108.05015, 2021.

[11] B. Ramesh and H. Yang, “Boosted kernelized correlation filters
for event-based face detection,” in Proc. of Winter Conference on
Applications of Computer Vision Workshops (WACVW), 2020.

[12] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza,
“Ultimate SLAM? combining events, images, and IMU for robust
visual SLAM in HDR and high-speed scenarios,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 994–1001, 2018.

[13] J. Li, S. Dong, Z. Yu, Y. Tian, and T. Huang, “Event-based vision
enhanced: A joint detection framework in autonomous driving,”
in Proc. of IEEE International Conference on Multimedia and Expo
(ICME), 2019.

[14] P. Duan, Y. Ma, X. Zhou, X. Shi, Z. W. Wang, T. Huang, and
B. Shi, “NeuroZoom: Denoising and super resolving neuromor-
phic events and spikes,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–14, 2023.

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Proc. of European Conference on Computer Vision (ECCV),
pp. 740–755, 2014.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proc. of Advances in Neural Information Processing Systems (NeurIPS),
pp. 5998–6008, 2017.

[17] D. Ko, J. Choi, H. K. Choi, K.-W. On, B. Roh, and H. J. Kim,
“MELTR: Meta loss transformer for learning to fine-tune video
foundation models,” in Proc. of Computer Vision and Pattern Recog-
nition (CVPR), pp. 20105–20115, 2023.

[18] P. Duan, Z. Wang, B. Shi, O. Cossairt, T. Huang, and A. Katsagge-
los, “Guided Event Filtering: Synergy between intensity images
and neuromorphic events for high performance imaging,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 11, pp. 8261–8275, 2021.

[19] S. Tulyakov, D. Gehrig, S. Georgoulis, J. Erbach, M. Gehrig, Y. Li,
and D. Scaramuzza, “Time Lens: Event-based video frame interpo-
lation,” in Proc. of Computer Vision and Pattern Recognition (CVPR),
2021.

[20] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-to-
video: Bringing modern computer vision to event cameras,” in
Proc. of Computer Vision and Pattern Recognition (CVPR), 2019.

[21] S. M. Mostafavi I., J. Choi, and K.-J. Yoon, “Learning to super
resolve intensity images from events,” in Proc. of Computer Vision
and Pattern Recognition (CVPR), 2020.

[22] L. Pan, C. Scheerlinck, X. Yu, R. Hartley, M. Liu, and Y. Dai,
“Bringing a blurry frame alive at high frame-rate with an event
camera,” in Proc. of Computer Vision and Pattern Recognition (CVPR),
2019.

[23] S. Tulyakov, A. Bochicchio, D. Gehrig, S. Georgoulis, Y. Li, and
D. Scaramuzza, “Time lens++: Event-based frame interpolation
with parametric non-linear flow and multi-scale fusion,” in Proc.
of Computer Vision and Pattern Recognition (CVPR), 2022.

[24] J. Han, C. Zhou, P. Duan, Y. Tang, C. Xu, C. Xu, T. Huang, and
B. Shi, “Neuromorphic camera guided high dynamic range imag-
ing,” in Proc. of Computer Vision and Pattern Recognition (CVPR),
2020.

[25] X. Zhou, P. Duan, Y. Ma, and B. Shi, “EvUnroll: Neuromorphic
events based rolling shutter image correction,” in Proc. of Computer
Vision and Pattern Recognition (CVPR), 2022.

[26] Z. W. Wang, P. Duan, O. Cossairt, A. Katsaggelos, T. Huang,
and B. Shi, “Joint filtering of intensity images and neuromorphic
events for high-resolution noise-robust imaging,” in Proc. of Com-
puter Vision and Pattern Recognition (CVPR), 2020.

[27] T. Kim, J. Lee, L. Wang, and K.-J. Yoon, “Event-guided deblurring
of unknown exposure time videos,” Proc. of European Conference on
Computer Vision (ECCV), 2022.

[28] Y. Yang, J. Han, J. Liang, I. Sato, and B. Shi, “Learning event guided
high dynamic range video reconstruction,” in Proc. of Computer
Vision and Pattern Recognition (CVPR), 2023.

[29] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 db
dynamic range frame-free PWM image sensor with lossless pixel-
level video compression and time-domain CDS,” IEEE Journal of
Solid-State Circuits, vol. 46, no. 1, 2010.

[30] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A
240 × 180 130 db 3 µs latency global shutter spatiotemporal vision
sensor,” IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–
2341, 2014.

[31] L. Pan, C. Scheerlinck, X. Yu, R. Hartley, M. Liu, and Y. Dai,
“Bringing a blurry frame alive at high frame-rate with an event
camera,” in Proc. of Computer Vision and Pattern Recognition (CVPR),
2019.

[32] P. Duan, Z. Wang, X. Zhou, Y. Ma, and B. Shi, “EventZoom:
Learning to denoise and super resolve neuromorphic events,” in
Proc. of Computer Vision and Pattern Recognition (CVPR), 2021.

[33] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scara-
muzza, “The event-camera dataset and simulator: Event-based
data for pose estimation, visual odometry, and SLAM,” The In-
ternational Journal of Robotics Research, vol. 36, no. 2, pp. 142–149,
2017.

[34] T. Stoffregen, C. Scheerlinck, D. Scaramuzza, T. Drummond,
N. Barnes, L. Kleeman, and R. Mahony, “Reducing the sim-to-real
gap for event cameras,” in Proc. of European Conference on Computer
Vision (ECCV), 2020.

[35] S. Zhang, Y. Zhang, Z. Jiang, D. Zou, J. Ren, and B. Zhou,
“Learning to see in the dark with events,” in Proc. of European
Conference on Computer Vision (ECCV), 2020.
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